Skip to main content

Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode

The purpose of this calculation is to perform degraded mode criticality evaluations of plutonium disposed in a ceramic waste form and emplaced in a Monitored Geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for plutonium immobilization is considered for this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilized plutonium) in each.

Community

Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form

The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss on the reactivity of a waste package containing mixed oxide spent nuclear fuel. Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the waste package are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF.

Community

Nuclear Wastes: Technologies for Separations and Transmutation

Disposal of radioactive waste from nuclear weapons production and power generation has
caused public outcry and political consternation. Nuclear Wastes presents a critical review
of some waste management and disposal alternatives to the current national policy of
direct disposal of light water reactor spent fuel. The book offers clearcut conclusions for
what the nation should do today and what solutions should be explored for tomorrow.
The committee examines the currently used "once-through" fuel cycle versus different

Community

MCNP Evaluation of Laboratory Critical Experiments: Homogeneous Mixture Criticals

The purpose of this analysis is to document Waste Package Development Department (WPPD) MCNP evaluations of benchmark solution Laboratory Critical Experiments (LCE's). The objective of this analysis is to quantify the ability of the MCNP 4A (Reference 5.4) code system to accurately calculate the effective neutron multiplication factor (keff) for various measured critical (i.e., keff=1.0) configurations.

Community

Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode

Thep purpose of this calculation is to perform degraded mode criticality evaluations of plutonium disposed in a ceramic waste form and emplaced in a Monitored geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for plutonium immobilization is considered in this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilized plutonium) in each.

Community

Plutonium Fuel: An Assessment Report by an Expert Group

Ever since the 1950s, plutonium, used in fas reactors, has been seen as the key to unlocking the vast energy resource contained in the the world's uranium reserves. However, the reductions in expected nuclear reactor installation rates, combined with discovery of additional uranium, have led to a lengthening in the perceived time interval before fast reactors, the most effective users of plutonium, will make large demands on plutonium supplies. THere are several options concerning its use or storage in the meantime.

Community

Report On External Criticality of Plutonium Waste Forms In A Geologic Repository

This report presents the analyses and results for the potential occurrence of external criticality events which could result from plutonium waste forms emplaced in a geologic repository similar to the one being developed at Yucca Mountain. The analyses evaluate both the MOX spent fuel and the immobilized plutonium waste forms in a repository if the waste package has degraded and if the fissile material has migrated to the invert and out into the far-field.

Community

External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository

This technical report provides an updated summary of the waste package (WP) external criticalityrelated
risk of the plutonium disposition ceramic waste form, which is being developed and
evaluated by the Office of Fissile Materials Disposition of the U.S. Department of Energy (DOE).
The ceramic waste form consists of Pu immobilized in ceramic disks, which would be embedded
in High-Level Waste (HLW) glass in the HLW glass disposal canisters, known as the "can-incanister"

Community

Response of the UK Government and the Department of the Environment, Northern Ireland to the Committee on Radioactive Waste management (CoRWM) Report on 'Geological Disposal of Higher Activity Radioactive Wastes'

The primary task of the Committee on Radioactive Waste Management (CoRWM) is to provide independent scrutiny of the Government’s and Nuclear Decommissioning Authority’s proposal, plans and programmes to deliver geological disposal, together with robust interim storage, as the long-term<br/>management option for the UK’s higher activity wastes. In June 2007 the Scottish Executive announced a policy of near-surface, near-site long-term storage rather than geological disposal.

UK Government and Devolved Administration Response to the Committee on Radioactive Waste Management (CoRWM) Report on 'Interim Storage of Higher Activity Wastes and the Management of Spent Fuels, Plutonium and Uranium'

The UK Government and the devolved administrations_ (for Scotland, Wales and Northern Ireland, from here on referred to as &quot;The Government&quot;) statement of October 2006 made clear there will be strong independent scrutiny of the proposals, plans and programmes to deliver geological disposal of higher activity radioactive waste.