Skip to main content

Geochemistry Model Validation Report: External Accumulation Model

The purpose of this report is to document and validate the external accumulation model that predicts accumulation of fissile materials in the invert, fractures and lithophysae in the rock beneath a degrading waste package containing spent nuclear fuel (SNF) in the monitored geologic repository at Yucca Mountain. (Lithophysae are hollow, bubblelike structures in the rock composed of concentric shells of finely crystalline alkali feldspar, quartz, and other materials (Bates and Jackson 1984 [DIRS 128109], p.

Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology

This report, Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology, contains a summary of the laboratory critical experiment (LCE) analyses used to support the validation of the disposal criticality analysis methodology.

Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data

In the 1980s, a series of critical experiments referred to as the Haut Taux de Combustion (HTC)
experiments was conducted by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) at the
experimental criticality facility in Valduc, France. The plutonium-to- uranium ratio and the isotopic
compositions of both the uranium and plutonium used in the simulated fuel rods were designed to be
similar to what would be found in a typical pressurized-water reactor fuel assembly that initially had an

Waste Package, LCE, CRC, and Radiochemical Assay Comparison Evaluation

The purpose of this calculation is to document the validity of the commercial reactor criticals (CRC) as a source for a spent nuclear fuel benchmark, and to characterize the neutronic similarities between a CRC and a waste package (WP). This report illustrates comparisons of neutron spectrum and the effects on criticality arising from physical differences between a WP and a CRC. This report is an engineering calculation supporting the development of the disposal criticality analysis methodology, performed under Quality Administrative Procedure (QAP)-3-15 Revision 0.

Geochemistry Model Validation Report: Material Degradation and Release Model

The purpose of the material degradation and release (MDR) model is to predict the fate of the waste package materials, specifically the retention or mobilization of the radionuclides and the neutron-absorbing material as a function of time after the breach of a waste package during the 10,000 years after repository closure. The output of this model is used directly to assess the potential for a criticality event inside the waste package due to the retention of the radionuclides combined with a loss of the neutron-absorbing material.

Initial Waste Package Probabilistic Criticality Analysis: Uncanistered Fuel

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to:
1. Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts;

Configuration Model Generator

The Disposal Criticality Analysis Methodology Topical Reporta prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the Configuration Generator Model for In-Package Criticality that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state.

Commercial Spent Nuclear Fuel Igneous Scenario Criticality Evaluation

The purpose of this scientific analysis report, Commercial Spent Nuclear Fuel Igneous Scenario Criticality Evaluation, is to investigate the effects of an igneous intrusion event occurring in the repository on commercial spent nuclear fuel (CSNF) stored in waste packages. This activity supports the Postclosure Criticality Department's development of bounding (design-basis) configurations for loading specifications and the evaluation of features, events, and processes (FEPs) that could lead to waste package criticality.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.