Skip to main content

UCF Waste Package Criticality Analysis

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the viability of the UCF waste package concept with respect to criticality regulatory requirements in compliance with the goals of the Waste Package Implementation Plan5ยท1 for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives.

Initial Waste Package Probabilistic Criticality Analysis: Uncanistered Fuel

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to:
1. Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts;

Frequency of SNF Misload for Uncanistered Fuel Waste Package

The purpose ofthis engineering calculation is to estimate the frequency of misloading spent nuclear fuel (SNF) assemblies that would result in exceeding the criticality design basis of a waste package (WP). This type of misload - a reactivity misload - results from the incorrect placement of one or more fuel assemblies into a waste package such that the criticality controls do not match the required controls for the fuel assemblies.

Probability of a PWR Uncanistered Fuel Waste Package Postclosure Criticality

The purpose of this calculation is to estimate the probability of criticality in a pressurized water reactor (PWR) uncanistered fuel waste package during the postclosure phase of the repository as a function of various waste package material, loading, and environmental parameters. Parameterization on the upper subcritical limit that is used to define the threshold for criticality will also be performed. The possibility of waste package misload due to human or equipment error during preclosure is also considered in estimating the postclosure criticality probability.

Probability of a PWR Uncanistered Fuel Waste Package Postclosure Criticality

The purpose of this calculation is to estimate the probability of criticality in a pressurized water reactor (PWR) uncanistered fuel waste package during the postclosure phase of the repository as a function of various waste package material, loading, and environmental parameters. Parameterization on the upper subcritical limit that is used to define the threshold for criticality will also be performed. The possibility of waste package misload due to human or equipment error during preclosure is also considered in estimating the postclosure criticality probability.

Frequency of SNF Misload for Uncanistered Fuel Waste Package

The purpose of this engineering calculation is to estimate the frequency of misloading spent nuclear fuel (SNF) assemblies that would result in exceeding the criticality design basis of a waste package (WP). This type of misload - a reactivity misload - results from the incorrect placement of one or more fuel assemblies into a waste package such that the criticality controls do not match the required controls for the fuel assemblies. An actual criticality event can not occur in a WP unless a moderator (e.g. water) is present.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.