Skip to main content

The Potential of Using Commercial Duel Purpose Canisters for Direct Disposal

This report evaluates the potential for directly disposing of licensed commercial Dual Purpose
Canisters (DPCs) inside waste package overpacks without reopening. The evaluation considers
the principal features of the DPC designs that have been licensed by the Nuclear Regulatory
Commission (NRC) as these relate to the current designs of waste packages and as they relate to
disposability in the repository. Where DPC features appear to compromise future disposability,
those changes that would improve prospective disposability are identified.

Community

Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculation: Degraded SNF Canister

The objective of this calculation is to characterize the criticality aspect of a Department of Energy Spent Nuclear Fuel (DOE SNF) canister containing 5 Fast Flux Test Facility (FFTF) assemblies in a Five-Pack defense High-Level Waste (HLW) waste package. The purpose of this calculation is to investigate the criticality issues for the waste package (WP) containing HLW and DOE SNF canisters in various stages of degradation.

Community

Nuclear Criticality Calculations for Canister-Based Facilities - HLW Glass

The purpose of this calculation is to perform nuclear criticality calculations for High-Level Waste (HLW) glass to support the criticality safety analysis of normal operations and off-normal conditions associated with the receipt, handling and loading of HLW glass canisters into 5-DHLW/DOE SNF Waste Packages (WPs) and 2-MCO/2-DHLW WPs in the surface facilities, in addition to the emplacement of loaded and sealed WPs in the sub-surface facility.

Community

EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages

The Monitored Geologic Repository (MGR) Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating (CRWMS M&O) contractor performed calculations to provide input to the design of a waste package (WP). This document analyzes the degradation processes of two types of pressurized water reactor (PWR) spent nuclear fuel (SNF): • Fuel fabricated from low enriched uranium oxide, which has been used, or will ~ used, in commercial nuclear power plants.
Community

The Potential of Using Commercial Dual Purpose Canisters for Direct Disposal

This report evaluates the potential for directly disposing of licensed commercial Dual Purpose
Canisters (DPCs) inside waste package overpacks without reopening. The evaluation considers
the principal features of the DPC designs that have been licensed by the Nuclear Regulatory
Commission (NRC) as these relate to thedesigns of waste packages and as they relate to
disposability in a repository in unsaturated volcanic tuff. Where DPC features appear to compromise future disposability in an unsaturated tuff (e.g., Yucca Mountain) repository

Community

MCNP Evaluation of Laboratory Critical Experiments: Homogeneous Mixture Criticals

The purpose of this analysis is to document Waste Package Development Department (WPPD) MCNP evaluations of benchmark solution Laboratory Critical Experiments (LCE's). The objective of this analysis is to quantify the ability of the MCNP 4A (Reference 5.4) code system to accurately calculate the effective neutron multiplication factor (keff) for various measured critical (i.e., keff=1.0) configurations.

Community

Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository

As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.

Community

Enrico Fermi Fast Reactor Spent Nuclear Fuel Criticality Calculations: Intact Mode

The purpose of this calculation is to perform intact mode and partially degraded mode criticality evaluations of the Department of Energy's (DOE) Enrico Fermi (EF) Spent Nuclear Fuel (SNF) co-disposed in a 5 Defense High-Level Waste (5-DHLW) Waste Package (WP) and emplaced in a Monitored Geologic Repository (MGR). The criticality evaluations estimate the values of the effective neutron multiplication factor, keff, as a measure of nuclear criticality potential, for the 5- DHLW/DOE SNF WP with intact or partially degraded internal configurations.

Community

Evaluation of Codisposal Viability for MOX (FFTF) DOE-Owned Fuel

There are more than 250 forms of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. Fast Flux Test Facility (FFTF) fuel has been designated as the representative fuel for the mixed-oxide (MOX) fuel group which is a mixture of uranium and plutonium oxides.

Community
Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.