Skip to main content

Isotopic Generation and Verification of the PWR Application Model

The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the Disposal Criticality Analysis Methodology Topical Report (YMP 2000).

EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages

The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Pressurized Water Reactor (PWR) (Ref. 1). The Shippingport PWR SNF has been considered for disposal at the proposed Yucca Mountain site.

Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package

The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) Three Mile Island- Unit 2 (TMI-2) spent nuclear fuel (SNF) in canisters. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (Civilian Radioactive Waste Management System Management and Operating Contractor [CRWMS M&O] 2000b, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).

EQ6 Calculation for Chemical Degradation of Shippingport LWBR (Th/U Oxide) Spent Nuclear Fuel Waste Packages

The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site.

Westinghouse MOX SNF Isotopic Source

The purpose of this calculation is to develop an estimate of the isotopic content as a function of time for mixed oxide (MOX) spent nuclear fuel (SNF) assemblies in a Westinghouse pressurized water reactor (PWR). These data will be used as source data for criticality, thermal, and radiation shielding evaluations of waste package (WP) designs for MOX assemblies in the Monitored Geologic Repository (MGR).

Waste Packages and Source Terms for the Commercial 1999 Design Basis Waste Streams

This calculation is prepared by the Monitored Geologic Repository Waste Package Requirements & Integration Department. The purpose of this calculation is to compile source term and commercial waste stream information for use in the analysis of waste package (WP) designs for commercial fuel. Information presented will consist of the number of WPs, source terms, metric tons of uranium, and the average characteristics of assemblies to be placed in each WP design. The source terms provide thermal output, radiation sources, and radionuclide inventories.

EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages

The Monitored Geologic Repository (MGR) Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating (CRWMS M&O) contractor performed calculations to provide input to the design of a waste package (WP). This document analyzes the degradation processes of two types of pressurized water reactor (PWR) spent nuclear fuel (SNF): • Fuel fabricated from low enriched uranium oxide, which has been used, or will ~ used, in commercial nuclear power plants.

Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode

Thep purpose of this calculation is to perform degraded mode criticality evaluations of plutonium disposed in a ceramic waste form and emplaced in a Monitored geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for plutonium immobilization is considered in this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilized plutonium) in each.

Enrico Fermi Fast Reactor Spent Nuclear Fuel Criticality Calculations: Intact Mode

The purpose of this calculation is to perform intact mode and partially degraded mode criticality evaluations of the Department of Energy's (DOE) Enrico Fermi (EF) Spent Nuclear Fuel (SNF) co-disposed in a 5 Defense High-Level Waste (5-DHLW) Waste Package (WP) and emplaced in a Monitored Geologic Repository (MGR). The criticality evaluations estimate the values of the effective neutron multiplication factor, keff, as a measure of nuclear criticality potential, for the 5- DHLW/DOE SNF WP with intact or partially degraded internal configurations.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.