Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
Environmental Permitting Guidance Radioactive Substances Regulation For the Environmental Permitting (England and Wales) Regulations 2010

Environmental Permitting Guidance Radioactive Substances Regulation For the Environmental Permitting (England and Wales) Regulations 2010
This guidance is aimed at helping readers understand the permitting and other requirements specific to Radioactive Substances Regulation (RSR). The RSR regime covers
- more than one European Directive, parts of which are also implemented by other regulatory regimes which, to an extent, complement RSR;
- various Government policies and strategies; and
Storage of Spent Nuclear Fuel (Specific Safety Guide)
Storage of Spent Nuclear Fuel (Specific Safety Guide)
This Safety Guide provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facilities and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods that have become necessary owing to delays in the development of disposal facilities and the decrease in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup.
Report to Congress on Abnormal Occurrences (NUREG-0090)
Report to Congress on Abnormal Occurrences (NUREG-0090)
Section 208 of the Energy Reorganization Act of 1974, as amended (Public Law 93-438), defines an "abnormal occurrence" (AO) as an unscheduled incident or event that the U.S. Nuclear Regulatory Commission (NRC) determines to be significant from the standpoint of public health or safety. The Federal Reports Elimination and Sunset Act of 1995 (Public Law 104-66) requires that the NRC report AOs to Congress annually.
Isotopic Generation and Verification of the PWR Application Model
Isotopic Generation and Verification of the PWR Application Model
The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the Disposal Criticality Analysis Methodology Topical Report (YMP 2000).
Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package
Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package
The purpose of this calculation is to evaluate the transient behavior and consequences of a worst- case criticality event involving intact pressurized water reactor (PWR) mixed-oxide (MOX) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR waste package (WP). This calculation will provide information necessary for demonstrating that the consequences of a worst-case criticality event involving intact PWR MOX SNF are insignificant in their effect on the overall radioisotopic inventory and on the integrity of the repository.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the “end-effect”. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package.
Preclosure Consequence Analyses
Preclosure Consequence Analyses
The purpose of this calculation is to demonstrate that the preclosure performance objectives specified in 10 CFR 63.111(a) and 10 CFR 63.111(b) (Reference 2.2.1) have been met for the proposed design and operations in the geologic repository operations area (GROA) during normal operations and Category 1 event sequences, and following Category 2 event sequences. Category 1 event sequences are those natural and human-induced event sequences that are expected to occur one or more times before permanent closure of the repository.
Overview of the Section 180(c) Program: History, Lessons Learned, and Potential Next Steps
Overview of the Section 180(c) Program: History, Lessons Learned, and Potential Next Steps
The U.S. Department of Energy’s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible, under the Nuclear Waste Policy Act of 1982, for the transportation of spent nuclear fuel and high-level radioactive waste from point of origin to destination at a federal storage or disposal facility. Section 180(c), written into the Nuclear Waste Policy Act Amendments of 1987, requires OCRWM to prepare public safety officials along the routes for these shipments.
Geological Disposal of Radioactive Waste
Geological Disposal of Radioactive Waste
The objective of this safety requirements publication is to set down the protection objectives and criteria for geological disposal and to establish the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management.
Going the Distance? The Safe Transport of Spent Nuclear Fuel and High-Level Radioactive Waste in the United States - Summary
Going the Distance? The Safe Transport of Spent Nuclear Fuel and High-Level Radioactive Waste in the United States - Summary
This new report from the National Research Council’s Nuclear and Radiation Studies Board (NRSB) and the Transportation Research Board reviews the risks and technical and societal concerns for the transport of spent nuclear fuel and high-level radioactive waste in the United States. Shipments are expected to increase as the U.S. Department of Energy opens a repository for spent fuel and high-level waste at Yucca Mountain, and the commercial nuclear industry considers constructing a facility in Utah for temporary storage of spent fuel from some of its nuclear waste plants.
Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package
Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package
The purpose of this analysis is to evaluate the transient behavior and consequences of a worst case criticality event involving intact pressurized water reactor (PWR) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR assembly waste package (WP). The objective of this analysis is to demonstrate that the consequences of a worst case criticality event involving intact PWR SNF are insignificant in their effect on the overall radioisotopic inventory in a WP. An internal WP criticality is modeled in a manner analogous to transient phenomena in a nuclear reactor core.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to
ANS Position Statement: The Safety of Transporting Radioactive Materials
ANS Position Statement: The Safety of Transporting Radioactive Materials
More than 45 million shipments of radioactive materials have taken place in the United States
over the last three decades, with a current rate of about three million per year. The majority of
these radioactive shipments consist of radiopharmaceuticals, luminous dials and indicators,
smoke detectors, contaminated clothing and equipment, and research and industrial sources.
Fewer than 3,500, or 0.01%, have been involved in any sort of accident, incident, or anything
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degradedmode criticality performance.