Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Probabilistic External Criticality Evaluation
Probabilistic External Criticality Evaluation
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
Nuclear Criticality Calculations for the Wet Handling Facility
Nuclear Criticality Calculations for the Wet Handling Facility
The purpose of this calculation is to apply the process described in the TDR-DS0-NU-000001 Rev. 02, Preclosure Criticality Analysis Process Report (Ref. 2.2.25) to aid in establishing design and operational criteria important to criticality safety and to identify potential control parameters and their limits important to the criticality safety of commercial spent nuclear fuel (CSNF) handling operations in the Wet Handling Facility (WHF)
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of Department of Energy (DOE) standardized Spent Nuclear Fuel (SNF) canisters.
Bias and Range of Applicability Determinations for Commercial Nuclear Fuels
Bias and Range of Applicability Determinations for Commercial Nuclear Fuels
The purpose of this calculation is to apply the process described in the Preclosure Criticality Analysis Process Report (Ref. 2.2.12) to establish the bias for keff calculations performed for commercial nuclear fuels using the MCNP code system. This bias will be used in criticality safety analyses as part of the basis for establishing the upper subcritical limit (USL). This calculation also defines the range of applicability (ROA) for which the bias may be used directly without need to consider additional penalties on the USL.
Preclosure Criticality Safety Analysis
Preclosure Criticality Safety Analysis
The means to prevent and control criticality must be addressed as part of the Preclosure Safety Analysis (PCSA) required for compliance with 10 CFR Part 63 [DIRS 180319], where the preclosure period covers the time prior to permanent closure activities. This technical report presents the nuclear criticality safety evaluation that documents the achievement of this objective.
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009
has further delayed the construction and operation of a permanent disposal facility for used fuel
and high level radioactive waste (HLW) in the United States. In concert with this decision, the
President directed the Energy Secretary to establish the Blue Ribbon Commission on America’s
Nuclear Future to review and provide recommendations on options for managing used fuel and
Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit
Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit
This report proposes and documents a computational benchmark for the estimation of the
additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor
actinides in a burnup-credit storage/transport environment, relative to SNF compositions
containing only the major actinides. The benchmark problem/configuration is a generic burnupcredit
cask designed to hold 68 boiling water reactor (BWR) spent nuclear fuel assemblies. The
purpose of this computational benchmark is to provide a reference configuration for the
Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel
Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel
This report has been prepared to support technical discussion of and planning for future
research supporting implementation of burnup credit for boiling-water reactor (BWR) spent fuel
storage in spent fuel pools and storage and transport cask applications. The review and
discussion in this report are based on knowledge and experience gained from work performed
in the United States and other countries, including experience with burnup credit for
pressurized-water reactor (PWR) spent fuel. Relevant physics and analysis phenomena are
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together Synthesis of the FSC National Workshop and Community Visit Bar-le-Duc, France
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together Synthesis of the FSC National Workshop and Community Visit Bar-le-Duc, France
The 7th Forum on Stakeholder Confidence (FSC) National Workshop and Community Visit was held on 7-9 April 2009 in Bar-le-Duc, France. It was organized with teh assistance of the CLIS (the Local Information and Oversight Committee) and the financial and logistical support of Andra, France's National Agency for the Management of Radioactive Waste.
Criticality Risks During Transportation of Spent Nuclear Fuel
Criticality Risks During Transportation of Spent Nuclear Fuel
This report presents a best-estimate probabilistic risk assessment (PRA) to quantify the frequency of criticality accidents during railroad transportation of spent nuclear fuel casks. The assessment is of sufficient detail to enable full scrutiny of the model logic and the basis for each quantitative parameter contributing to criticality accident scenario frequencies. The report takes into account the results of a 2007 peer review of the initial version of this probabilistic risk assessment, which was published as EPRI Technical Report 1013449 in December 2006.
Yucca Mountain - Nevada's Perspective
Yucca Mountain - Nevada's Perspective
Yucca Mountain—that barren rise in the desert ninety miles from Las Vegas—is the nation‘s only site identified for the potential location of the first ge ological repository for commercially-generated HLNW and SNF. Many assume
that Yucca Mountain has geologic and climatic qualities that make it uniquely
suitable to isolate the thousands of metric tons of the world‘s most lethal, long lived waste currently accumulating at 104 operating nuclear power plants across the United States.
Unfortunately, Yucca Mountain is an exceptionally bad site,
The Final Report of the West Cumbria Managing Radioactive Waste Safely Partnership
The Final Report of the West Cumbria Managing Radioactive Waste Safely Partnership
The West Cumbria Managing Radioactive Waste Safely (MRWS) Partnership was set up
to consider the issues that would be involved in taking part in a search to see if there is
anywhere in the Allerdale and/or Copeland areas suitable for a repository for higher activity
radioactive waste.
Over the last three years we have looked at reports and literature, heard from experts in the
field, commissioned independent research and invited reviews by independent experts.
We have placed a high priority on public and stakeholder engagement (PSE), carrying out
Some Principles for Siting Controversial Decisions: Issues from the US Experience with High Level Nuclear Waste
Some Principles for Siting Controversial Decisions: Issues from the US Experience with High Level Nuclear Waste
Beginning with the role of "stakeholders" - those whose interests are, knowingly or unknowingly, affected - in the siting of noxious facilities, this paper seeks to develop principles for acceptable and democratically arrived at polices related to problems associated with advances in and products of science and technology. Although widely regarded as a necessary condition for success, the principles underpinning stakeholder involvement, such as representativeness, are often violated in practice.
STAKEHOLDER CONFIDENCE AND RADIOACTIVE WASTE DISPOSAL Inauguration, First Workshop and Meeting of the NEA Forum on Stakeholder Confidence in the Area of Radioactive Waste Management
STAKEHOLDER CONFIDENCE AND RADIOACTIVE WASTE DISPOSAL Inauguration, First Workshop and Meeting of the NEA Forum on Stakeholder Confidence in the Area of Radioactive Waste Management
The aim of the Forum’s first workshop was to establish contacts amongst Forum participants and
to lay the basis of its future programme and methods of work. In order to give guidance to the FSC
and, at the same time, to give this initiative high-level input and visibility, the workshop was preceded
by a half-day inaugural event. Members of the NEA Radioactive Waste Management Committee and
invited speakers provided their perspectives in the area of stakeholder confidence. Over the following
Stepwise Approach to Decision Making for Long-term Radioactive Waste Management Experience, Issues and Guiding Principles
Stepwise Approach to Decision Making for Long-term Radioactive Waste Management Experience, Issues and Guiding Principles
The context of long-term radioactive waste management is being shaped
by changes in modern society. Values such as health, environmental protection
and safety are increasingly important, as are trends towards improved forms of
participatory democracy that demand new forms of risk governance in dealing
with hazardous activities. These changes in turn necessitate new forms of
dialogue and decision-making processes that include a large number of
stakeholders. The new dynamic of dialogue and decision-making process has
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
The main objective of this report is to identify conditions which affect public concern (either
increase or decrease) and political acceptance for developing and implementing programmes
for geologic disposal of long-lived radioactive waste. It also looks how citizens and relevant
actors can be associated in the decision making process in such a way that their input is
enriching the outcome towards a more socially robust and sustainable solution. Finally, it
aims at learning from the interaction how to optimise risk management addressing needs and
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV - Lessons Learned
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV - Lessons Learned
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009 has further delayed the construction and operation of a permanent disposal facility for used fuel and high level radioactive waste (HLW) in the United States. In concert with this decision, the President directed the Energy Secretary to establish the Blue Ribbon Commission on America's Nuclear Future to review and provide recommendations on options for managing used fuel and HLW.
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
The main objective of this report is to identify conditions which affect public concern (either
increase or decrease) and political acceptance for developing and implementing programmes
for geologic disposal of long-lived radioactive waste. It also looks how citizens and relevant
actors can be associated in the decision making process in such a way that their input is
enriching the outcome towards a more socially robust and sustainable solution. Finally, it
aims at learning from the interaction how to optimise risk management addressing needs and
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Utilization of burnup credit in criticality safety analysis for long-term disposal of spent
nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile
material that will be present in the repository. Burnup-credit calculations are based on depletion
calculations that provide a conservative estimate of spent fuel contents (in terms of criticality
potential), followed by criticality calculations to assess the value of the effective neutron
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance.
Bias Determination for DOE Nuclear Fuels
Bias Determination for DOE Nuclear Fuels
The purpose of this calculation is to establish the relative change in the effective neutron multiplication factor (keff) due to the use of MCNP unique identifiers (ZAIDs) in Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF (Reference 2.2.1, Attachment 3, MCNP inputs.zip) that are different to the ZAIDs used in the Analysis of Critical Benchmark Experiments and Critical Limit Calculation for DOE SNF (Reference 2.2.5, Table 5-3).
Dry Transfer Facility Criticality Safety Calculations
Dry Transfer Facility Criticality Safety Calculations
This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the Project Design Criteria (PDC) Document (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in Project Requirements Document (Canori and Leitner 2003 [DIRS 166275], p.
Nuclear Waste Facility Siting and Local Opposition
Nuclear Waste Facility Siting and Local Opposition
On the historic evidence, but also for the distinctive qualities of the challenge, nuclear waste siting conflicts are assuredly among the most refractory in the large variety of NIMBY (Not In My Back Yard) facility siting disputes. Since the president brought the Yucca Mountain process to a halt in 2010 (or, more accurately, issued its death certificate), the search for a permanent waste fuel repository is at the starting line again.