Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) Three Mile Island- Unit 2 (TMI-2) spent nuclear fuel (SNF) in canisters. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (Civilian Radioactive Waste Management System Management and Operating Contractor [CRWMS M&O] 2000b, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009
has further delayed the construction and operation of a permanent disposal facility for used fuel
and high level radioactive waste (HLW) in the United States. In concert with this decision, the
President directed the Energy Secretary to establish the Blue Ribbon Commission on America’s
Nuclear Future to review and provide recommendations on options for managing used fuel and
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together Synthesis of the FSC National Workshop and Community Visit Bar-le-Duc, France
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together Synthesis of the FSC National Workshop and Community Visit Bar-le-Duc, France
The 7th Forum on Stakeholder Confidence (FSC) National Workshop and Community Visit was held on 7-9 April 2009 in Bar-le-Duc, France. It was organized with teh assistance of the CLIS (the Local Information and Oversight Committee) and the financial and logistical support of Andra, France's National Agency for the Management of Radioactive Waste.
Yucca Mountain - Nevada's Perspective
Yucca Mountain - Nevada's Perspective
Yucca Mountain—that barren rise in the desert ninety miles from Las Vegas—is the nation‘s only site identified for the potential location of the first ge ological repository for commercially-generated HLNW and SNF. Many assume
that Yucca Mountain has geologic and climatic qualities that make it uniquely
suitable to isolate the thousands of metric tons of the world‘s most lethal, long lived waste currently accumulating at 104 operating nuclear power plants across the United States.
Unfortunately, Yucca Mountain is an exceptionally bad site,
The Final Report of the West Cumbria Managing Radioactive Waste Safely Partnership
The Final Report of the West Cumbria Managing Radioactive Waste Safely Partnership
The West Cumbria Managing Radioactive Waste Safely (MRWS) Partnership was set up
to consider the issues that would be involved in taking part in a search to see if there is
anywhere in the Allerdale and/or Copeland areas suitable for a repository for higher activity
radioactive waste.
Over the last three years we have looked at reports and literature, heard from experts in the
field, commissioned independent research and invited reviews by independent experts.
We have placed a high priority on public and stakeholder engagement (PSE), carrying out
Some Principles for Siting Controversial Decisions: Issues from the US Experience with High Level Nuclear Waste
Some Principles for Siting Controversial Decisions: Issues from the US Experience with High Level Nuclear Waste
Beginning with the role of "stakeholders" - those whose interests are, knowingly or unknowingly, affected - in the siting of noxious facilities, this paper seeks to develop principles for acceptable and democratically arrived at polices related to problems associated with advances in and products of science and technology. Although widely regarded as a necessary condition for success, the principles underpinning stakeholder involvement, such as representativeness, are often violated in practice.
STAKEHOLDER CONFIDENCE AND RADIOACTIVE WASTE DISPOSAL Inauguration, First Workshop and Meeting of the NEA Forum on Stakeholder Confidence in the Area of Radioactive Waste Management
STAKEHOLDER CONFIDENCE AND RADIOACTIVE WASTE DISPOSAL Inauguration, First Workshop and Meeting of the NEA Forum on Stakeholder Confidence in the Area of Radioactive Waste Management
The aim of the Forum’s first workshop was to establish contacts amongst Forum participants and
to lay the basis of its future programme and methods of work. In order to give guidance to the FSC
and, at the same time, to give this initiative high-level input and visibility, the workshop was preceded
by a half-day inaugural event. Members of the NEA Radioactive Waste Management Committee and
invited speakers provided their perspectives in the area of stakeholder confidence. Over the following
Stepwise Approach to Decision Making for Long-term Radioactive Waste Management Experience, Issues and Guiding Principles
Stepwise Approach to Decision Making for Long-term Radioactive Waste Management Experience, Issues and Guiding Principles
The context of long-term radioactive waste management is being shaped
by changes in modern society. Values such as health, environmental protection
and safety are increasingly important, as are trends towards improved forms of
participatory democracy that demand new forms of risk governance in dealing
with hazardous activities. These changes in turn necessitate new forms of
dialogue and decision-making processes that include a large number of
stakeholders. The new dynamic of dialogue and decision-making process has
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
The main objective of this report is to identify conditions which affect public concern (either
increase or decrease) and political acceptance for developing and implementing programmes
for geologic disposal of long-lived radioactive waste. It also looks how citizens and relevant
actors can be associated in the decision making process in such a way that their input is
enriching the outcome towards a more socially robust and sustainable solution. Finally, it
aims at learning from the interaction how to optimise risk management addressing needs and
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV - Lessons Learned
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV - Lessons Learned
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009 has further delayed the construction and operation of a permanent disposal facility for used fuel and high level radioactive waste (HLW) in the United States. In concert with this decision, the President directed the Energy Secretary to establish the Blue Ribbon Commission on America's Nuclear Future to review and provide recommendations on options for managing used fuel and HLW.
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
The main objective of this report is to identify conditions which affect public concern (either
increase or decrease) and political acceptance for developing and implementing programmes
for geologic disposal of long-lived radioactive waste. It also looks how citizens and relevant
actors can be associated in the decision making process in such a way that their input is
enriching the outcome towards a more socially robust and sustainable solution. Finally, it
aims at learning from the interaction how to optimise risk management addressing needs and
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
The purpose of this analysis is to provide input on the criticality potential of various degraded configurations to an analysis on the probability of a criticality event in a Pressurized Water Reactor (PWR) Advanced Uncanistered Fuel (AUCF) Waste Package (WP).
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.
Extended Storage and Transportation - Evaluation of Drying Adequacy
Extended Storage and Transportation - Evaluation of Drying Adequacy
The U.S. Nuclear Regulatory Commission (NRC) is evaluating the safety and security of spent nuclear fuel (SNF) stored in dry casks for extended time periods before transportation to a location where the SNF is further processed or permanently disposed.
Criticality Calculation for the Most Reactive Degraded Configurations of the FFTF SNF Codisposal WP Containing an Intact Ident-69 Container
Criticality Calculation for the Most Reactive Degraded Configurations of the FFTF SNF Codisposal WP Containing an Intact Ident-69 Container
The objective of this calculation is to perform additional degraded mode criticality evaluations of the Department of Energy's (DOE) Fast Flux Test Facility (FFTF) Spent Nuclear Fuel (SNF) codisposed in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP). The scope of this calculation is limited to the most reactive degraded configurations of the codisposal WP with an almost intact Ident-69 container (breached and flooded but otherwise non-degraded) containing intact FFTF SNF pins.
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
This study is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probablility of criticality in the far- field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses.
Nuclear Waste Facility Siting and Local Opposition
Nuclear Waste Facility Siting and Local Opposition
On the historic evidence, but also for the distinctive qualities of the challenge, nuclear waste siting conflicts are assuredly among the most refractory in the large variety of NIMBY (Not In My Back Yard) facility siting disputes. Since the president brought the Yucca Mountain process to a halt in 2010 (or, more accurately, issued its death certificate), the search for a permanent waste fuel repository is at the starting line again.
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degraded mode criticality performance.
Evaluation of Codisposal Viability for MOX (FFTF) DOE-Owned Fuel
Evaluation of Codisposal Viability for MOX (FFTF) DOE-Owned Fuel
There are more than 250 forms of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. Fast Flux Test Facility (FFTF) fuel has been designated as the representative fuel for the mixed-oxide (MOX) fuel group which is a mixture of uranium and plutonium oxides.
Nuclear Waste Bill Feedback
Nuclear Waste Bill Feedback
On April 25, 2013, Senators Wyden, Alexander, Feinstein, and Murkowski released a draft bill to create a sustainable, participatory process for managing nuclear waste. The senators requested comments and suggestions on the draft bill, as well as on the alternative language for siting an interim storage facility proposed by Senators Alexander and Feinstein. In addition, the senators posed eight questions on which they sought comments.
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
This report presents the analysis and conclusions with respect to disposal criticality for canisters containing aluminum-based fuels from research reactors. The analysis has been divided into three phases. Phase I, dealt with breached and flooded waste packages containing relatively intact canisters and intact internal (basket) structures; Phase II, the subject of this report, covers the degradation of the spent nuclear fuel (SNF) and structures internal to the codisposal waste package including high level waste (HLW), canisters, and criticality control material.
Probability of Criticality Before 10,000 Yearrs
Probability of Criticality Before 10,000 Yearrs
The first objective of this calculation is the identification of the degraded configurations of the Enhanced Design Alternatives (EDA) II design that have some possibility of criticality and that can occur within 10,000 years of placement in the repository. The next objective is to evaluate the criticality of these configurations and to estimate the probability of occurrence for those configurations that could support criticality.
Public Beliefs, Concerns and Preferences Regarding the Management of Used Nuclear Fuel and High Level Radioactive Waste
Public Beliefs, Concerns and Preferences Regarding the Management of Used Nuclear Fuel and High Level Radioactive Waste
US policy for management of used nuclear fuel (UNF) and high level radioactive wastes (HLRW) is at a crossroads, and the success of new policy directions will depend in part on broad public acceptance and support. In this paper I provide an overview of the evidence concerning the beliefs and concerns of members of the American public regarding UNF and HLNW. I also characterize the evidence on American’s policy preferences for management of these materials.