Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) Three Mile Island- Unit 2 (TMI-2) spent nuclear fuel (SNF) in canisters. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (Civilian Radioactive Waste Management System Management and Operating Contractor [CRWMS M&O] 2000b, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).
LINE - Leadership in Nuclear Energy Commission - Full Report
LINE - Leadership in Nuclear Energy Commission - Full Report
Recognizing that Idaho has a major strategic and economic interest in maintaining INL’s leadership role and in helping
the nuclear energy industry successfully meet these broader challenges, Idaho governor C.L. “Butch” Otter established
the Leadership in Nuclear Energy or “LINE” Commission in February 2012.
The Governor recognized that recent national developments in the nuclear energy sector will cause the State of Idaho to
face important choices in the future and that he needed to understand the best options available.
Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants
Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants
The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs).
Impacts Associated with Transfer of Spent Nuclear Fuel from Spent Fuel Storage Pools to Dry Storage After Five Years of Cooling
Impacts Associated with Transfer of Spent Nuclear Fuel from Spent Fuel Storage Pools to Dry Storage After Five Years of Cooling
In order to decrease the risk of terrorism, it has been suggested that used nuclear fuel should be
moved to dry storage early, after five years cooling in the spent fuel pool. The Nuclear
Regulatory Commission (NRC) has reviewed this issue and issued a white paper stating that it
did not believe such a measure was justified in light of additional security measures implemented
at nuclear plants and the impacts associated with the early movement of used fuel into dry
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
The International Security Implications Of U.S. Domestic Nuclear Power Decisions
The International Security Implications Of U.S. Domestic Nuclear Power Decisions
The United States makes decisions regarding the domestic uses of nuclear energy and the nuclear fuel cycle primarily based economic considerations, domestic political constraints, and environmental impact concerns. Such factors influence U.S. foreign policy decisions as well, but foreign policy decisions are often more strongly determined by national security considerations, including concerns about nuclear weapons proliferation and nuclear terrorism.
A Technology Roadmap for Generation IV Nuclear Energy Systems
A Technology Roadmap for Generation IV Nuclear Energy Systems
To advance nuclear energy to meet future energy needs, ten countries—Argentina, Brazil, Canada, France, Japan, the Republic of Korea, the Republic of South Africa, Switzerland, the United Kingdom, and the United States—have agreed on a framework for international cooperation in research for a future generation of nuclear energy systems, known as Generation IV. The figure below gives an overview of the generations of nuclear energy systems. The first generation was advanced in the 1950s and 60s in the early prototype reactors.
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
Criticality Evaluation of Degraded Internal Configurations for the PWR AUCF WP Designs
The purpose of this analysis is to provide input on the criticality potential of various degraded configurations to an analysis on the probability of a criticality event in a Pressurized Water Reactor (PWR) Advanced Uncanistered Fuel (AUCF) Waste Package (WP).
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.
Abridged History of Reactor and Fuel Cycle Technologies Development: A White Paper for the Reactor and Fuel Cycle Technology Subcommittee of the Blue Ribbon Commission
Abridged History of Reactor and Fuel Cycle Technologies Development: A White Paper for the Reactor and Fuel Cycle Technology Subcommittee of the Blue Ribbon Commission
The almost limitless energy of the atom was first harnessed in the United States, as scientists proved the basic physics of nuclear fission in a rudimentary reactor built in the floor of a squash court at the University of Chicago in 1942, and then harnessed that proven energy source in the form of atomic weapons used to end World War II. Scientists who accomplished this feat moved quickly after World War II to harness that power for peaceful uses, focusing primarily on electricity generation for industry, commerce, and household use.
U.S. Department of Energy Nuclear Waste Fund Fee Adequacy Assessment Report
U.S. Department of Energy Nuclear Waste Fund Fee Adequacy Assessment Report
The purpose of this U.S. Department of Energy Nuclear Waste Fund Fee Adequacy Assessment
Report (Assessment) is to present an analysis of the adequacy of the fee being paid by nuclear
power utilities for the permanent disposal of their SNF and HLW by the United States
government.
This Assessment consists of six sections: Section 1 provides historical context and a comparison
to previous fee adequacy assessments; Section 2 describes the system, cost, income, and
Extended Storage and Transportation - Evaluation of Drying Adequacy
Extended Storage and Transportation - Evaluation of Drying Adequacy
The U.S. Nuclear Regulatory Commission (NRC) is evaluating the safety and security of spent nuclear fuel (SNF) stored in dry casks for extended time periods before transportation to a location where the SNF is further processed or permanently disposed.
Criticality Calculation for the Most Reactive Degraded Configurations of the FFTF SNF Codisposal WP Containing an Intact Ident-69 Container
Criticality Calculation for the Most Reactive Degraded Configurations of the FFTF SNF Codisposal WP Containing an Intact Ident-69 Container
The objective of this calculation is to perform additional degraded mode criticality evaluations of the Department of Energy's (DOE) Fast Flux Test Facility (FFTF) Spent Nuclear Fuel (SNF) codisposed in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP). The scope of this calculation is limited to the most reactive degraded configurations of the codisposal WP with an almost intact Ident-69 container (breached and flooded but otherwise non-degraded) containing intact FFTF SNF pins.
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
This study is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probablility of criticality in the far- field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses.
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degraded mode criticality performance.
CURRENT U.S. DEPARTMENT OF ENERGY NUCLEAR ENERGY RD&D PROGRAMS AND PLANS
CURRENT U.S. DEPARTMENT OF ENERGY NUCLEAR ENERGY RD&D PROGRAMS AND PLANS
This document summarizes DOE’s commercial nuclear energy RD&D program based on a R&D roadmap and on DOE/NE’s budget request for fiscal year 2011. The roadmap is written at a high level and is mostly qualitative in terms of activities, milestones and decisions to be made and does not contain budget information. The fiscal year 2011 budget request contains more specific and detailed information on activities, milestones, decisions, and budgets but only for fiscal year 2011 and the two preceding fiscal years.
Evaluation of Codisposal Viability for MOX (FFTF) DOE-Owned Fuel
Evaluation of Codisposal Viability for MOX (FFTF) DOE-Owned Fuel
There are more than 250 forms of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. Fast Flux Test Facility (FFTF) fuel has been designated as the representative fuel for the mixed-oxide (MOX) fuel group which is a mixture of uranium and plutonium oxides.
Review of DOE's Nuclear Energy Research and Development Program - Summary
Review of DOE's Nuclear Energy Research and Development Program - Summary
There has been a substantial resurgence of interest in nuclear power in the United States
over the past few years. One consequence has been a rapid growth in the research
budget of DOE’s Office of Nuclear Energy (NE). In light of this growth, the Office of
Management and Budget included within the FY2006 budget request a study by the
National Academy of Sciences to review the NE research programs and recommend
priorities among those programs. The programs to be evaluated were: Nuclear Power
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
This report presents the analysis and conclusions with respect to disposal criticality for canisters containing aluminum-based fuels from research reactors. The analysis has been divided into three phases. Phase I, dealt with breached and flooded waste packages containing relatively intact canisters and intact internal (basket) structures; Phase II, the subject of this report, covers the degradation of the spent nuclear fuel (SNF) and structures internal to the codisposal waste package including high level waste (HLW), canisters, and criticality control material.
Probability of Criticality Before 10,000 Yearrs
Probability of Criticality Before 10,000 Yearrs
The first objective of this calculation is the identification of the degraded configurations of the Enhanced Design Alternatives (EDA) II design that have some possibility of criticality and that can occur within 10,000 years of placement in the repository. The next objective is to evaluate the criticality of these configurations and to estimate the probability of occurrence for those configurations that could support criticality.
Criticality Evaluation of Degraded Internal Configurations for a 44 BWR Waste Package
Criticality Evaluation of Degraded Internal Configurations for a 44 BWR Waste Package
The purpose of this calculation is to perform an example criticality evaluation for degraded internal configurations of a boiling water reactor (BWR) waste package (WP) containing 44 spent nuclear fuel (SNF) assemblies.
DSNF and Other Waste Form Degradation Abstraction
DSNF and Other Waste Form Degradation Abstraction
Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters.
Nuclear Energy Research and Development Roadmap
Nuclear Energy Research and Development Roadmap
To achieve energy security and greenhouse gas (GHG) emission reduction objectives, the United States must develop and deploy clean, affordable, domestic energy sources as quickly as possible. Nuclear power will continue to be a key component of a portfolio of technologies that meets our energy goals. This document provides a roadmap for the Department of Energy’s (DOE’s) Office of Nuclear Energy (NE) research, development, and demonstration activities that will ensure nuclear energy remains viable energy option for the United States.