Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
Supplement to the Disposal Criticality Analysis Methodology
Supplement to the Disposal Criticality Analysis Methodology
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
NRC Waste Confidence Positions
NRC Waste Confidence Positions
In response to the remand of the U.S. Court of Appeals for the District of Columbia Circuit (Minnesota v. NRC, 602 F.2d 412 (1979)), and as a continuation of previous proceedings conducted in this area by NRC (44 Fed. Reg. 61,372), the Commission initiated a generic rulemaking proceeding on October 25, 1979.
Transportation and Storage Subcommittee Report to the Full Commission DRAFT
Transportation and Storage Subcommittee Report to the Full Commission DRAFT
The main question before the Transportation and Storage Subcommittee was whether the United States
should change its approach to storing and transporting spent nuclear fuel (SNF) and high-level
radioactive waste (HLW) while one or more permanent disposal facilities are established.
To answer this question and to develop specific recommendations and options for consideration by the
full Commission, the Subcommittee held multiple meetings and deliberative sessions, visited several
The Siting Record
The Siting Record
An Account of the Programs of Federal Agencies and Events That Have Led to the Selection of a Potential Site for a Geologic Repository for High-Level Radioactive Waste
Internationalization of the Nuclear Fuel Cycle--Goals, Strategies, and Challenges
Internationalization of the Nuclear Fuel Cycle--Goals, Strategies, and Challenges
The so-called nuclear renaissance has increased worldwide interest in nuclear power.
This potential growth also has increased, in some quarters, concern that nonproliferation
considerations are not being given sufficient attention. In particular, since the introduction of
many new power reactors will lead to requiring an increase in uranium enrichment services to
provide the reactor fuel, the proliferation risk of adding enrichment facilities in countries that do
Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants
Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants
The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs).
Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit
Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit
This report proposes and documents a computational benchmark for the estimation of the
additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor
actinides in a burnup-credit storage/transport environment, relative to SNF compositions
containing only the major actinides. The benchmark problem/configuration is a generic burnupcredit
cask designed to hold 68 boiling water reactor (BWR) spent nuclear fuel assemblies. The
purpose of this computational benchmark is to provide a reference configuration for the
Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel
Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel
This report has been prepared to support technical discussion of and planning for future
research supporting implementation of burnup credit for boiling-water reactor (BWR) spent fuel
storage in spent fuel pools and storage and transport cask applications. The review and
discussion in this report are based on knowledge and experience gained from work performed
in the United States and other countries, including experience with burnup credit for
pressurized-water reactor (PWR) spent fuel. Relevant physics and analysis phenomena are
Transportation and Storage Subcommittee Report to the Full Commission - Updated Report
Transportation and Storage Subcommittee Report to the Full Commission - Updated Report
To organize its investigation of whether changes are needed in the nation’s current approach to storing and eventually transporting spent nuclear fuel (SNF) and high-level waste (HLW), the Subcommittee began by asking a series of related questions:
• What role should storage play in an integrated U.S. waste management system and strategy in the future?
Disposal and Storage of Spent Nuclear Fuel--Finding the Right Balance--A Report to Congress and the Secretary of Energy
Disposal and Storage of Spent Nuclear Fuel--Finding the Right Balance--A Report to Congress and the Secretary of Energy
The Nuclear Waste Policy Act of 1982, as amended, established a statutory basis
for managing the nation’s civilian (or commercially produced) spent nuclear
fuel. The law established a process for siting, developing, licensing, and constructing
an underground repository for the permanent disposal of that waste.
Utilities were given the primary responsibility for storing spent fuel until it is
accepted by the Department of Energy (DOE) for disposal at a repository —
originally expected to begin operating in 1998. Since then, however, the repository
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
A Critical Review of the Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage
A Critical Review of the Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage
This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing kf estimates based on reactivity "equivalent" fresh fuel enrichment (REFFE) to kl estimates using the actual spent fuel isotopics.
Industry Spent Fuel Storage Handbook
Industry Spent Fuel Storage Handbook
The Industry Spent Fuel Storage Handbook (“the Handbook”) addresses the relevant aspects of at-reactor spent (or used) nuclear fuel (SNF) storage in the United States. With the prospect of SNF being stored at reactor sites for the foreseeable future, it is expected that all U.S. nuclear power plants will have to implement at-reactor dry storage by 2025 or shortly thereafter. The Handbook provides a broad overview of recent developments for storing SNF at U.S. reactor sites, focusing primarily on at-reactor dry storage of SNF.
Technical Bases for Extended Dry Storage of Spent Nuclear Fuel
Technical Bases for Extended Dry Storage of Spent Nuclear Fuel
Independent spent fuel storage installations (ISFSIs) are currently licensed for 20 years. However, delays in developing permanent spent fuel disposal capability require continued ISFSI storage beyond the 20-year term. This report provides a technical basis for demonstrating the feasibility of extended spent fuel storage in ISFSIs.
Overview of the Section 180(c) Program: History, Lessons Learned, and Potential Next Steps
Overview of the Section 180(c) Program: History, Lessons Learned, and Potential Next Steps
The U.S. Department of Energy’s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible, under the Nuclear Waste Policy Act of 1982, for the transportation of spent nuclear fuel and high-level radioactive waste from point of origin to destination at a federal storage or disposal facility. Section 180(c), written into the Nuclear Waste Policy Act Amendments of 1987, requires OCRWM to prepare public safety officials along the routes for these shipments.
Extended Storage and Transportation - Evaluation of Drying Adequacy
Extended Storage and Transportation - Evaluation of Drying Adequacy
The U.S. Nuclear Regulatory Commission (NRC) is evaluating the safety and security of spent nuclear fuel (SNF) stored in dry casks for extended time periods before transportation to a location where the SNF is further processed or permanently disposed.
Calculation Method for the Projection of Future Spent Nuclear Fuel Discharges
Calculation Method for the Projection of Future Spent Nuclear Fuel Discharges
This report describes the calculation method developed for the projection of future utility spent nuclear fuel (SNF) discharges in regard to their timing, quantity, burnup, and initial enrichment. This projection method complements the utility-supplied RW-859 data on historic discharges and short-term projections of SNF discharges by providing long-term projections that complete the total life cycle of discharges for each of the current U.S. nuclear power reactors.
Options for Developing Public and Stakeholder Engagement for the Storage and Management of Spent Nuclear Fuel (SNF) and High Level Waste (HLW) in the United States
Options for Developing Public and Stakeholder Engagement for the Storage and Management of Spent Nuclear Fuel (SNF) and High Level Waste (HLW) in the United States
This report puts forth a number of options and recommendations for how to engage
stakeholders and other members of the public in the storage and management of spent
nuclear fuel and high level waste in the United States. The options are generated from a
scientific review of existing publications proposing criteria for assessing past efforts to
engage publics and stakeholders in decision-making about risky technologies. A set of
nine principles are derived for evaluating cases of public and stakeholder engagement with
Disposal and Storage of Spent Nuclear Fuel — Finding the Right Balance
Disposal and Storage of Spent Nuclear Fuel — Finding the Right Balance
The Nuclear Waste Policy Act of 1982, as amended, established a statutory basis
for managing the nation’s civilian (or commercially produced) spent nuclear
fuel. The law established a process for siting, developing, licensing, and constructing
an underground repository for the permanent disposal of that waste.
Utilities were given the primary responsibility for storing spent fuel until it is
accepted by the Department of Energy (DOE) for disposal at a repository —
originally expected to begin operating in 1998. Since then, however, the repository
Vacuum Drying Test Plan - Public Version
Vacuum Drying Test Plan - Public Version
NRC initiated a research activity with the Center for Nuclear Waste Regulatory Analyses (CNWRA®) to develop a conceptual test plan for measuring the quantity of residual water remaining in a canister following vacuum drying to the criterion referenced in NUREG–1536 (NRC, 2010). The test plan will be used to help NRC assess options for independently performing an experimental program or to support engagements with industry or the Department of Energy should they undertake a similar effort.
Nuclear Waste: Is There A Need For Federal Interim Storage?
Nuclear Waste: Is There A Need For Federal Interim Storage?
About 20,000 metric tons of spent, or used, nuclear
fuel have accumulated since the beginning of commercial
nuclear power prbduction in the United States. At the end
of the currently licensed period of all existing nuclear power
plants and those under construction, the amount of spent
nuclear fuel is expected to total 87,000 metric tons.
Thus far, practically all of the spent nuclear fuel is
stored in water-filled pools at reactor sites. However, space
does not exist in the pools to store all the spent fuel expected
Nuclear Fuels Storage and Transportation Planning Project Inventory Basis
Nuclear Fuels Storage and Transportation Planning Project Inventory Basis
This report provides information on the inventory of commercial spent nuclear fuel, referred to herein as used nuclear fuel (UNF), as well as Government-owned UNF and high-level radioactive waste (HLW). Actual or estimated quantitative values for current inventories are provided along with inventory forecasts derived from examining a different future commercial nuclear power generation scenarios. The report also includes select information on the characteristics associated with the wastes examined (e.g. type, packaging, heat generation rate, decay curves).
DSNF and Other Waste Form Degradation Abstraction
DSNF and Other Waste Form Degradation Abstraction
Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters.