Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
OECD/NEA Burnup Credit Criticality Benchmark, Analysis of Phase II-B Results: Conceptual PWR Spent Fuel Transportation Cask
OECD/NEA Burnup Credit Criticality Benchmark, Analysis of Phase II-B Results: Conceptual PWR Spent Fuel Transportation Cask
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
Technical Evaluation Report on the Content of the U.S. Department of Energy's Yucca Mountain Repository License Application
Technical Evaluation Report on the Content of the U.S. Department of Energy's Yucca Mountain Repository License Application
This “Technical Evaluation Report on the Content of the U.S. Department of Energy’s Yucca Mountain License Application; Postclosure Volume: Repository Safety After Permanent Closure” (TER Postclosure Volume) presents information on the NRC staff’s review of DOE’s Safety Analysis Report (SAR), provided on June 3, 2008, as updated by DOE on February 19, 2009. The NRC staff also reviewed information DOE provided in response to NRC staff’s requests for additional information and other information that DOE provided related to the SAR.
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
The "Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology" contains a summary of the analyses that compare SNF measured isotopic concentrations (radiochemical assays) to calculated SNF isotop~c concentrations (SAS2H module ·orScale4.3). The results of these analyses are used to support the validation of the isotopic models for spent commercial light water reactor (LWR) fuel.
Summary Report of Commercial Reactor Criticality Data for Quad Cities Unit 2
Summary Report of Commercial Reactor Criticality Data for Quad Cities Unit 2
The Potential of Using Commercial Duel Purpose Canisters for Direct Disposal
The Potential of Using Commercial Duel Purpose Canisters for Direct Disposal
This report evaluates the potential for directly disposing of licensed commercial Dual Purpose
Canisters (DPCs) inside waste package overpacks without reopening. The evaluation considers
the principal features of the DPC designs that have been licensed by the Nuclear Regulatory
Commission (NRC) as these relate to the current designs of waste packages and as they relate to
disposability in the repository. Where DPC features appear to compromise future disposability,
those changes that would improve prospective disposability are identified.
NRC Waste Confidence Rulemaking, Federal Register, 1984, 1990, 1999, and 2008
NRC Waste Confidence Rulemaking, Federal Register, 1984, 1990, 1999, and 2008
NRC Waste Confidence Rulemaking, Federal Register, 1984, 1990, 1999, and 2008
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Yucca Mountain Licensing Standard Options for Very Long Time Frames: Technical Bases for the Standard and Compliance Assessments
Yucca Mountain Licensing Standard Options for Very Long Time Frames: Technical Bases for the Standard and Compliance Assessments
In the existing U.S. Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations governing the spent nuclear fuel and high-level radioactive waste site at Yucca Mountain, Nevada, the time period of compliance was set at 10,000 years. Recently, a Court ordered that EPA and NRC either revise the regulation on this topic to be "based upon and consistent with" recommendations made by a panel of the National Academy of Sciences, who recommended a time period of compliance out to as long as one million years, or seek congressional relief.
Overview of the Nuclear Regulatory Commission and Its Regulatory Process for the Nuclear Fuel Cycle for Light Water Reactors
Overview of the Nuclear Regulatory Commission and Its Regulatory Process for the Nuclear Fuel Cycle for Light Water Reactors
This paper provides a brief description of the United States Nuclear Regulatory Commission (NRC) and its regulatory process for the current nuclear fuel cycle for light water power reactors (LWRs). It focuses on the regulatory framework for the licensing of facilities in the fuel cycle. The first part of the paper provides an overview of the NRC and its regulatory program including a description of its organization, function, authority, and responsibilities.
Extended Storage and Transportation - Evaluation of Drying Adequacy
Extended Storage and Transportation - Evaluation of Drying Adequacy
The U.S. Nuclear Regulatory Commission (NRC) is evaluating the safety and security of spent nuclear fuel (SNF) stored in dry casks for extended time periods before transportation to a location where the SNF is further processed or permanently disposed.
Disposal Criticality Analysis Methodology Topical Report Revision 2
Disposal Criticality Analysis Methodology Topical Report Revision 2
This topical report describes the approach to the risk-informed, performance-based methodology to be used for performing postclosure criticality analyses for waste forms in the Monitored Geologic Repository at Yucca Mountain, Nevada. The risk-informed, performance-based methodology will be used during the licensing process to demonstrate how the potential for postclosure criticality will be limited and to demonstrate that public health and safety are protected against postclosure criticality.
The Potential of Using Commercial Dual Purpose Canisters for Direct Disposal
The Potential of Using Commercial Dual Purpose Canisters for Direct Disposal
This report evaluates the potential for directly disposing of licensed commercial Dual Purpose
Canisters (DPCs) inside waste package overpacks without reopening. The evaluation considers
the principal features of the DPC designs that have been licensed by the Nuclear Regulatory
Commission (NRC) as these relate to thedesigns of waste packages and as they relate to
disposability in a repository in unsaturated volcanic tuff. Where DPC features appear to compromise future disposability in an unsaturated tuff (e.g., Yucca Mountain) repository
NRC SFST ISG-2: Fuel Retrievability
NRC SFST ISG-2: Fuel Retrievability
This Interim Staff Guidance (ISG) provides guidance to the staff for determining if
storage systems to be licensed under 10 CFR Part 72 allow ready retrieval of spent fuel.
This guidance is not a regulation or a requirement.
NRC ISG-1: Classifying the Condition of Spent Nuclear Fuel for Interim Storage and Transportation Based on Function
NRC ISG-1: Classifying the Condition of Spent Nuclear Fuel for Interim Storage and Transportation Based on Function
This Interim Staff Guidance (ISG) provides guidance to the staff on classifying spent nuclear
fuel as either (1) damaged, (2) undamaged, or (3) intact, before interim storage or
transportation. This is not a regulation or requirement and can be modified or superseded by
an applicant with supportable technical arguments.
Revision 2
NRC SFST ISG-3: Post Accident Recovery and Compliance with 10 CFR 72.122(l)
NRC SFST ISG-3: Post Accident Recovery and Compliance with 10 CFR 72.122(l)
Compliance with 10 CFR 72.122(l) has been interpreted to mean that a licensee, during any
point in the storage cycle, must have a means of retrieving and repackaging individual fuel
assemblies even after an accident. The staff has reevaluated this interpretation.
NRC SFST ISG-4: Cask Closure Weld Inspections
NRC SFST ISG-4: Cask Closure Weld Inspections
The closure weld for the outer cover plate for austenitic stainless steel designs may be
inspected using either volumetric or multiple pass dye penetrant techniques subject to the
following conditions:
• Dye penetrant (PT) examination may only be used in lieu of volumetric
examination only on austenitic stainless steels. PT examination should be done
in accordance with ASME Section V, Article 6, “Liquid Penetrant Examination.”
• For either ultrasonic examination (UT) or PT examination, the minimum
NRC SFST ISG-5: Confinement Evaluation
NRC SFST ISG-5: Confinement Evaluation
Several changes have occurred since the issuance of NUREG-1536, “Standard Review Plan
(SRP) for Dry Cask Storage Systems,” that affect the staff’s approach to confinement
evaluation. The attachment to this ISG integrates the current staff approach into a revision of
ISG-5. The highlights of the changes include:
• Reflects October 1998 revisions to 10 CFR 72.104 and 10 CFR 72.106.
• Expands and clarifies acceptance criteria associated with confinement analysis and
acceptance of “leak tight” testing instead of detailed confinement analysis.
NRC SFST ISG-6: Establishing minimum initial enrichment for the bounding design basis fuel assembly(s)
NRC SFST ISG-6: Establishing minimum initial enrichment for the bounding design basis fuel assembly(s)
The Standard Review Plan, NUREG-1536, Chapter 5, Section V, 2 recommends that “the
applicant calculate the source term on the basis of the fuel that will actually provide the
bounding source term,” and states that the applicant should, “either specify the minimum initial
enrichment or establish the specific source terms as operating controls and limits for cask use.”
A specified source term is difficult for most cask users to determine and for inspectors to verify.
NRC SFST ISG-7: Potential Generic Issue Concerning Cask Heat Transfer in a Transportation Accident
NRC SFST ISG-7: Potential Generic Issue Concerning Cask Heat Transfer in a Transportation Accident
Staff raised two major issues concerning the adverse effects of fission gases to the gas-mixture
thermal conductivity in a spent fuel canister in a post accident environment. The two major
concerns were: (1) the reduction of the thermal conductivity of the canister gas by the mixing of
fission gases expelled from failed fuel pins and (2) the resultant temperature and pressure rise
within the canister. Since the fission gas is typically of a lower conductivity than the cover gas,
NRC SFST ISG-8: Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks
NRC SFST ISG-8: Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks
Title 10 of the Code of Federal Regulations (10 CFR) Part 71, Packaging and Transportation of
Radioactive Material, and 10 CFR Part 72, Licensing Requirements for the Independent
Storage of Spent Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater
Than Class C Waste, require that spent nuclear fuel (SNF) remain subcritical in transportation
and storage, respectively. Unirradiated reactor fuel has a well-specified nuclide composition
that provides a straightforward and bounding approach to the criticality safety analysis of