Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
Nuclear Waste Discussion Draft - FLO13341 - 113th Congress - 1st Session
Nuclear Waste Discussion Draft - FLO13341 - 113th Congress - 1st Session
To establish a new organization to manage nuclear waste, provide a consensual process for siting nuclear waste facilities, ensure adequate funding for managing nuclear waste, and for other purposes.
Nuclear Waste Policy Act (Section 112) - Environmental Assessment, Yucca Mountain Site, Nevada Research and Development Area, Nevada, Volume 1
Nuclear Waste Policy Act (Section 112) - Environmental Assessment, Yucca Mountain Site, Nevada Research and Development Area, Nevada, Volume 1
By the end of this century, the United States plans to begin operating the first geologic repository for the permanent disposal of commercial spent nuclear fuel and high-level radioactive Waste. Public Law 97-425, the Nuclear waste Policy Act of 1982 (the Act), specifies the process for selecting a repository site, and constructing, operating, closing, and decommissioning the repository.
Nuclear Waste: Is There a Need for Federal Interim Storage--Executive Summary--Report of the Monitored Retrievable Storage Commission
Nuclear Waste: Is There a Need for Federal Interim Storage--Executive Summary--Report of the Monitored Retrievable Storage Commission
Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit
Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit
This report proposes and documents a computational benchmark for the estimation of the
additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor
actinides in a burnup-credit storage/transport environment, relative to SNF compositions
containing only the major actinides. The benchmark problem/configuration is a generic burnupcredit
cask designed to hold 68 boiling water reactor (BWR) spent nuclear fuel assemblies. The
purpose of this computational benchmark is to provide a reference configuration for the
Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel
Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel
This report has been prepared to support technical discussion of and planning for future
research supporting implementation of burnup credit for boiling-water reactor (BWR) spent fuel
storage in spent fuel pools and storage and transport cask applications. The review and
discussion in this report are based on knowledge and experience gained from work performed
in the United States and other countries, including experience with burnup credit for
pressurized-water reactor (PWR) spent fuel. Relevant physics and analysis phenomena are
Criticality Risks During Transportation of Spent Nuclear Fuel
Criticality Risks During Transportation of Spent Nuclear Fuel
This report presents a best-estimate probabilistic risk assessment (PRA) to quantify the frequency of criticality accidents during railroad transportation of spent nuclear fuel casks. The assessment is of sufficient detail to enable full scrutiny of the model logic and the basis for each quantitative parameter contributing to criticality accident scenario frequencies. The report takes into account the results of a 2007 peer review of the initial version of this probabilistic risk assessment, which was published as EPRI Technical Report 1013449 in December 2006.
Nuclear Waste: Is There a Need for Federal Interim Storage? Report of the Monitored Retrievable Storage Review Commission
Nuclear Waste: Is There a Need for Federal Interim Storage? Report of the Monitored Retrievable Storage Review Commission
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Utilization of burnup credit in criticality safety analysis for long-term disposal of spent
nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile
material that will be present in the repository. Burnup-credit calculations are based on depletion
calculations that provide a conservative estimate of spent fuel contents (in terms of criticality
potential), followed by criticality calculations to assess the value of the effective neutron
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance.
Summary of the Nuclear Waste Administration Act of 2013 Discussion Draft
Summary of the Nuclear Waste Administration Act of 2013 Discussion Draft
The Nuclear Waste Administration Act of 2013 discussion draft is intended to implement the recommendations of the Blue Ribbon Commission on America’s Nuclear Future to establish a nuclear waste administration and create a consent-based process for siting nuclear waste facilities. The bill enables the federal government to fulfill its commitment to managing nuclear waste, ending the costly liability the government bears for its failure to dispose of commercial spent fuel.
Nuclear Waste Bill to Implement the Blue Ribbon Commission's Recommendations Section-by-Section Summary of Discussion Draft - April 2013
Nuclear Waste Bill to Implement the Blue Ribbon Commission's Recommendations Section-by-Section Summary of Discussion Draft - April 2013
In General: The Nuclear Waste Administration Act of 2013 includes most of the language of S.3469, the Nuclear Waste Administration Act of 2012. The most significant change in the 2013 bill is the provision linking construction and siting of a consolidated storage facility to progress on a repository. The 2012 Act prohibited storage of any spent nuclear fuel beyond 10,000 metric tons until the Administration concluded a repository consent agreement.
Used Fuel Disposition U.S. Radioactive Waste Inventory and Characteristics Related to Potential Future Nuclear Energy Systems
Used Fuel Disposition U.S. Radioactive Waste Inventory and Characteristics Related to Potential Future Nuclear Energy Systems
In February, 2011 the Blue Ribbon Commission (BRC) on America’s Nuclear Future requested the Department of Energy
(DOE) to provide a white paper summarizing the quantities and characteristics of potential waste generated by various
nuclear fuel cycles. The BRC request expressed interest in two classes of radioactive wastes:
Existing waste that are or might be destined for a civilian deep geologic repository or equivalent.
Potential future waste, generated by alternative nuclear fuel cycles (e.g. wastes from reprocessing, mixed-oxide
Evaluation of Burnup Credit for Accommodating PWR Spent Nuclear Fuel in High-capacity Cask Designs
Evaluation of Burnup Credit for Accommodating PWR Spent Nuclear Fuel in High-capacity Cask Designs
This paper presents an evaluation of the amount of burnup credit needed for high-density casks to
transport the current U.S. inventory of commercial spent nuclear fuel (SNF) assemblies. A prototypic
32-assembly cask and the current regulatory guidance were used as bases for this evaluation.
By comparing actual pressurized-water-reactor (PWR) discharge data (i.e., fuel burnup and initial
enrichment specifications for fuel assemblies discharged from U.S. PWRs) with actinide-only-based
Civilian Nuclear Waste Disposal
Civilian Nuclear Waste Disposal
The Congressional Research Service prepared a report in August titled "Civilian Nuclear Waste Disposal." It contains a summary of the radioactive waste management program, and includes an update with recent developments on YM licensing, consent based siting, legislation, volunteer private storage sites, and current policy.
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository, Volume II: Immobilized In Ceramic
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository, Volume II: Immobilized In Ceramic
As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.
Managing Nuclear Waste-A Better Idea, A Report to the U.S. Secretary of Energy
Managing Nuclear Waste-A Better Idea, A Report to the U.S. Secretary of Energy
When Congress passed the Nuclear Waste Policy Act of 1982, it created the
Office of Civilian Radioactive Waste Management within the Department of
Energy to spearhead the implementation of this landmark legislation.
In Section 303 of the Act, however, Congress directed the Secretary of Energy
to study alternative approaches to managing the radioactive waste program, as
follows:
ALTERNATIVE MEANS OF FINANCING
SEC. 303. The Secretary shall undertake a study with respect to