Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Research Supporting Implementation of Burnup Credit in the Criticality Safety Assessment of Transport and Storage Casks
Research Supporting Implementation of Burnup Credit in the Criticality Safety Assessment of Transport and Storage Casks
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2
FEDERAL COMMITMENTS REGARDING USED FUEL AND HIGH-LEVEL WASTES
FEDERAL COMMITMENTS REGARDING USED FUEL AND HIGH-LEVEL WASTES
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.
CRC Reactivity Calculations for McGuire Unit 1
CRC Reactivity Calculations for McGuire Unit 1
The purpose of this calculation is to document the McGuire Unit 1 pressurized water reactor (PWR) reactivity calculations performed as part of the commercial reactor critical (CRC) evaluation program. CRC evaluation reactivity calculations are performed at a number of statepoints, representing reactor start-up critical conditions at either beginning of life (BOL), beginning of cycle (BOC), or mid-cycle when the reactor resumed operation after a shutdown.
Managing Commercial High-Level Radioactive Waste
Managing Commercial High-Level Radioactive Waste
After more than 20 years of commercial nuclear power, the Federal Government has yet to develop a broadly supported policy for fulfilling its legal responsibility for the final isolation of high-level radioactive waste. OTA's study concludes that until such a policy is adopted in law, there is a substantial risk that the false starts, shifts of policy, and fluctuating support that have plagued the final isolation program in the past will continue.
Characteristics of Spent Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation, Rev. 0
Characteristics of Spent Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation, Rev. 0
The purpose of this report, and the information contained in the associated computerized data bases, is to establish the DOE/OCRWM reference characteristics of the radioactive waste materials that may be accepted by DOE for emplacement in the mined geologic disposal system as developed under the Nuclear Waste Policy Act of 1982. This report provides relevant technical data for use by DOE and its supporting contractors and is not intended to be a policy document.
Westinghouse MOX SNF Isotopic Source
Westinghouse MOX SNF Isotopic Source
The purpose of this calculation is to develop an estimate of the isotopic content as a function of time for mixed oxide (MOX) spent nuclear fuel (SNF) assemblies in a Westinghouse pressurized water reactor (PWR). These data will be used as source data for criticality, thermal, and radiation shielding evaluations of waste package (WP) designs for MOX assemblies in the Monitored Geologic Repository (MGR).
CRC Depletion Calculations for Crystal River Unit 3
CRC Depletion Calculations for Crystal River Unit 3
The purpose of this calculation is to document the Crystal River Unit 3 pressurized water reactor (PWR) fuel depletion calculations performed as part of the commercial reactor critical (CRC) evaluation program. The CRC evaluations support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository.
CRC Depletion Calculations for McGuire Unit 1
CRC Depletion Calculations for McGuire Unit 1
The purpose of this calculation is to document the McGuire Unit 1 pressurized water reactor (PWR) fuel depletion calculations performed as part of the commercial reactor critical (CRC) evaluation program. The CRC evaluations support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository.
Characteristics of Potential Repository Wastes
Characteristics of Potential Repository Wastes
The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for all spent fuels and high-level wastes (HLW) that will eventually be disposed of in a geologic repository. The purpose of this document, and the information contained in the associated computerized data bases and supporting technical reports, is to provide the technical characteristics of the radioactive waste materials that will (or may) be accepted by DOE for interim storage in an MRS or emplacement in a repository as developed under the Nuclear Waste Policy Act Amendment of 1987.
Transportation and Storage Subcommittee Report to the Full Commission DRAFT
Transportation and Storage Subcommittee Report to the Full Commission DRAFT
The main question before the Transportation and Storage Subcommittee was whether the United States
should change its approach to storing and transporting spent nuclear fuel (SNF) and high-level
radioactive waste (HLW) while one or more permanent disposal facilities are established.
To answer this question and to develop specific recommendations and options for consideration by the
full Commission, the Subcommittee held multiple meetings and deliberative sessions, visited several
Spent Fuel Project Office, ISG-8 - Limited Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, ISG-8 - Limited Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office Interim Staff Guidance - 8
Disposal Subcommittee Report to the Full Commission
Disposal Subcommittee Report to the Full Commission
The Disposal Subcommittee of the Blue Ribbon Commission on America’s Nuclear Future (BRC) addressed a wide-ranging set of issues, all bearing directly on the central question: “How can the United States go about establishing one or more disposal sites for high-level nuclear wastes in a manner and within a timeframe that is technically, socially, economically, and politically acceptable?”
slides - Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste
slides - Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
DOE SNF Phase I and II Summary Report
DOE SNF Phase I and II Summary Report
There are more than 250 forms of U.S. Department of Energy (DOE)owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. For each fuel group, a fuel type that represents the characteristics of all fuels in that group has been selected for detailed analysis.
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1
The Siting Record
The Siting Record
An Account of the Programs of Federal Agencies and Events That Have Led to the Selection of a Potential Site for a Geologic Repository for High-Level Radioactive Waste
Federal Policy for the Disposal of Highly Radioactive Wastes from Commercial Nuclear Power Plants
Federal Policy for the Disposal of Highly Radioactive Wastes from Commercial Nuclear Power Plants
How to dispose of highly radioactive wastes from commercial nuclear power plants is a question that has remained unresolved in the face rapidly changing technological, economic, and political requirements. In the three decades following WWII, two federal agencies -- the Atomic Energy Commission and the Energy Research and Development Administration -- tried unsuccessfully to develop a satisfactory plan for managing high level wastes.
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009
has further delayed the construction and operation of a permanent disposal facility for used fuel
and high level radioactive waste (HLW) in the United States. In concert with this decision, the
President directed the Energy Secretary to establish the Blue Ribbon Commission on America’s
Nuclear Future to review and provide recommendations on options for managing used fuel and
Phenomena and Parameters Important to Burnup Credit
Phenomena and Parameters Important to Burnup Credit
Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and
parameters important to implementation of burnup credit in out-of-reactor applications involving pressurizedwater-
reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR)
spent fuel have been more limited. This paper reviews the knowledge and experience gained from work
performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis
Axial Burnup Profile Database for Pressurized Water Reactors
Axial Burnup Profile Database for Pressurized Water Reactors
The data were obtained directly from utilities whose reactors represent the range of commercial PWR fuel lattices. The work was performed by Yankee Atomic Electric for Sandia National Laboratory. All axial burnup profiles were calculated from 3-D depletion analyses of the core configuration. The organizations and utilities providing axial burnup profiles for the database used different model codes for the 3D-depletion calculations. The model codes used were: SIMULATE-3, NEMO, ANC, and PRESTO-II. Cross-section inputs describing the assemblies are derived from assembly lattice calculations.
Validation of SCALE-4 for Burnup Credit Applications
Validation of SCALE-4 for Burnup Credit Applications
In the past, criticality analysis of pressurized water reactor (PWR) fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. If credit is allowed for fuel burnup in the design of casks that are used in the transport of spent light water reactor fuel to a repository, the increase in payload can lead to a significant reduction in the cost of transport and a potential reduction in the risk to the public. A portion of the work has been performed at Oak Ridge National Laboratory (ORNL) in support of the U.S.
Federal Policy for the Disposal of Highly Radioactive Wastes from Commercial Nuclear Power Plans, An Historical Analysis
Federal Policy for the Disposal of Highly Radioactive Wastes from Commercial Nuclear Power Plans, An Historical Analysis
How to dispose of highly radioactive wastes from commercial nuclear power plants is a question that has remained unresolved in the face of rapidly changing technological, economic, and political requirements. In the three decades following World War II, two federal agencies--the Atomic Energy Commission and the Energy Research and Development Administration--tried unsuccessfully to develop a satisfactory plan for managing high level wastes.