Category of Content
Siting Experience Documents Only
Publication Date
Keywords
Nuclear Criticality Calculations for the Wet Handling Facility
Nuclear Criticality Calculations for the Wet Handling Facility
The purpose of this calculation is to apply the process described in the TDR-DS0-NU-000001 Rev. 02, Preclosure Criticality Analysis Process Report (Ref. 2.2.25) to aid in establishing design and operational criteria important to criticality safety and to identify potential control parameters and their limits important to the criticality safety of commercial spent nuclear fuel (CSNF) handling operations in the Wet Handling Facility (WHF)
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of Department of Energy (DOE) standardized Spent Nuclear Fuel (SNF) canisters.
Bias and Range of Applicability Determinations for Commercial Nuclear Fuels
Bias and Range of Applicability Determinations for Commercial Nuclear Fuels
The purpose of this calculation is to apply the process described in the Preclosure Criticality Analysis Process Report (Ref. 2.2.12) to establish the bias for keff calculations performed for commercial nuclear fuels using the MCNP code system. This bias will be used in criticality safety analyses as part of the basis for establishing the upper subcritical limit (USL). This calculation also defines the range of applicability (ROA) for which the bias may be used directly without need to consider additional penalties on the USL.
DOE SNF Phase I and II Summary Report
DOE SNF Phase I and II Summary Report
There are more than 250 forms of U.S. Department of Energy (DOE)owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. For each fuel group, a fuel type that represents the characteristics of all fuels in that group has been selected for detailed analysis.
Preclosure Criticality Safety Analysis
Preclosure Criticality Safety Analysis
The means to prevent and control criticality must be addressed as part of the Preclosure Safety Analysis (PCSA) required for compliance with 10 CFR Part 63 [DIRS 180319], where the preclosure period covers the time prior to permanent closure activities. This technical report presents the nuclear criticality safety evaluation that documents the achievement of this objective.
Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package
Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package
The objective of this analysis is to characterize a codisposal canister containing MIT or ORR fuel in the Five-Pack defense high level waste (DHLW) waste package (WP) to demonstrate concept viability related to use in the Mined Geologic Disposal System (MGDS) environment for the postclosure time frame. The purpose of this analysis is to investigate the disposal criticality and shielding issues for the DHLW WP and establish DHLW WP and codisposal canister compatibility with the MGDS, and to provide criticality and shielding evaluations for the preliminary DHLW WP design.
Bias Determination for DOE Nuclear Fuels
Bias Determination for DOE Nuclear Fuels
The purpose of this calculation is to establish the relative change in the effective neutron multiplication factor (keff) due to the use of MCNP unique identifiers (ZAIDs) in Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF (Reference 2.2.1, Attachment 3, MCNP inputs.zip) that are different to the ZAIDs used in the Analysis of Critical Benchmark Experiments and Critical Limit Calculation for DOE SNF (Reference 2.2.5, Table 5-3).
Geochemistry Model Validation Report: External Accumulation Model
Geochemistry Model Validation Report: External Accumulation Model
The purpose of this report is to document and validate the external accumulation model that predicts accumulation of fissile materials in the invert, fractures and lithophysae in the rock beneath a degrading waste package containing spent nuclear fuel (SNF) in the monitored geologic repository at Yucca Mountain. (Lithophysae are hollow, bubblelike structures in the rock composed of concentric shells of finely crystalline alkali feldspar, quartz, and other materials (Bates and Jackson 1984 [DIRS 128109], p.
BLUE RIBBON COMMISSION – Request for Information
BLUE RIBBON COMMISSION – Request for Information
o Request: The current balance of the Nuclear Waste Fund (NWF).
o Response: The balance of the Nuclear Waste Fund $24.56 billion as of November 2010. (Source: U.S. DOE OCRWM Annual Financial Report for Years Ended September 30, 2010 and 2009)
o Request: The NWF fee projections of future fee receipts.
Dry Transfer Facility Criticality Safety Calculations
Dry Transfer Facility Criticality Safety Calculations
This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the Project Design Criteria (PDC) Document (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in Project Requirements Document (Canori and Leitner 2003 [DIRS 166275], p.
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
This evaluation is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide analyses of disposal of aluminum (AI)-based Department of Energy-owned research reactor spent nuclear fuel (DOE-SNF) in a codisposal waste package with five canisters of high-level waste (HLW). The analysis was performed in sufficient detail to establish the technical viability of the Al-based DOE-SNF codisposal canister option.
Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II
Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II
The objective of this analysis is to characterize the criticality safety aspects of a degraded Department of Energy spent nuclear fuel (DOESNF) canister containing Masachusetts Institute of Technology (MIT) or Oak Ridge Research (ORR) fuel in the Five Pack defense high level waste (DHLW) waste package to demonstrate concept viability related to use in the Minded Geologic Disposal System (MGDS) environment for the postclosure time frame.
Canister Handling Facility Criticality Safety Calculations
Canister Handling Facility Criticality Safety Calculations
This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC (Bechtel SAIC Company) 2004 (DIRS 167614).
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
This report presents the analysis and conclusions with respect to disposal criticality for canisters containing aluminum-based fuels from research reactors. The analysis has been divided into three phases. Phase I, dealt with breached and flooded waste packages containing relatively intact canisters and intact internal (basket) structures; Phase II, the subject of this report, covers the degradation of the spent nuclear fuel (SNF) and structures internal to the codisposal waste package including high level waste (HLW), canisters, and criticality control material.
Nuclear Criticality Calculations for Canister-Based Facilities- Commercial SNF
Nuclear Criticality Calculations for Canister-Based Facilities- Commercial SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of the transportation, aging and disposal (TAD) canister-based systems.
Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF
Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of the transportation, aging and disposal (TAD) canister-based systems.
TRIGA Fuel Phase I and II Criticality Calculation
TRIGA Fuel Phase I and II Criticality Calculation
The purpose of this calculation is to characterize the criticality aspect of the codisposal of TRIGA (Training, Research, Isotopes, General Atomic) reactor spent nuclear fuel (SNF) with Savannah River Site (SRS) high-level waste (HLW). The TRIGA SNF is loaded into a Department of Energy (DOE) standardized SNF canister which is centrally positioned inside five-canister defense SRS HLW waste package (WP). The objective of the calculation is to investigate the criticality issues for the WP containing the five SRS HLW and DOE SNF canisters in various stages of degradation.
Intact and Degraded Criticality Calculations for the Codisposal of Shippingport PWR Fuel in a Waste Package
Intact and Degraded Criticality Calculations for the Codisposal of Shippingport PWR Fuel in a Waste Package
The purpose of this calculation is to characterize the criticality safety concerns for the codisposal of Shippingport pressurized water reactor (SP PWR) spent nuclear fuel (SNF) contained in a standardized Department of Energy (DOE) SNF canister, and high-level waste (HLW) glass in a waste package (WP) placed in a Monitored Geologic Repository (MGR). The result of this calculation will be used to evaluate criticality issues and provide input for the DOE SNF canister design, referred to as "the canister" in this document.
External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository
External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository
This technical report provides an updated summary of the waste package (WP) external criticalityrelated
risk of the plutonium disposition ceramic waste form, which is being developed and
evaluated by the Office of Fissile Materials Disposition of the U.S. Department of Energy (DOE).
The ceramic waste form consists of Pu immobilized in ceramic disks, which would be embedded
in High-Level Waste (HLW) glass in the HLW glass disposal canisters, known as the "can-incanister"
Intact and Degraded Mode Criticality Calculations for the Codisposal of Fort Saint Vrain HTGR Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of Fort Saint Vrain HTGR Spent Nuclear Fuel in a Waste Package
The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) Fort Saint Vrain (FSV) commercial High Temperature Gas Reactor (HTGR) spent nuclear fuel. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (WP)(CRWMS M&O 2000c, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).
Aging Facility Criticality Safety Calculations
Aging Facility Criticality Safety Calculations
This design calculation is a revision of the previous criticality evaluation of the operations and
processes that are performed in the Aging Facility. It will also demonstrate and assure that the
storage and aging operations to be performed in the Aging Facility meet the criticality safety
design criteria in the Project Design Criteria Document (BSC 2005i, Section 4.9.2.2), and the
nuclear criticality safety requirements described in the SNF Aging System Description Document
Intact and Degraded Criticality Calculations for the Codisposal of Shippingport LWBR Spent Nuclear Fuel in a Waste Package
Intact and Degraded Criticality Calculations for the Codisposal of Shippingport LWBR Spent Nuclear Fuel in a Waste Package
The objective of this calculation is to characterize the nuclear criticality safety concerns associated with the codisposal of the U.S. Department of Energy's (DOE) Shippingport Light Water Breeder Reactor (SP LWBR) Spent Nuclear Fuel (SNF) in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP), which is to be placed in a Monitored Geologic Repository (MGR).
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
The objective of this calculation is to perform intact and degraded mode criticality evaluations of the U.S. Department of Energy’s (DOE) Advanced Test Reactor (ATR) Spent Nuclear Fuel (SNF) placed in the DOE standardized SNF canister. This analysis evaluates the codisposal of the DOE SNF canister containing the ATR SNF in a 5-Defense High-Level Waste (5-DHLW) Short Waste Package (WP) (Bechtel SAIC Company, LLC [BSC] 2004a), which is to be placed in a monitored geologic repository (MGR).