Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
Monitored Retrievable Storage Facility Conceptual Design Report
Monitored Retrievable Storage Facility Conceptual Design Report
Monitored Retrievable Storage Facility Design Criteria Policy Document - 2nd Draft
Monitored Retrievable Storage Facility Design Criteria Policy Document - 2nd Draft
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 3-Surry Unit 1 Cycle 2
FEDERAL COMMITMENTS REGARDING USED FUEL AND HIGH-LEVEL WASTES
FEDERAL COMMITMENTS REGARDING USED FUEL AND HIGH-LEVEL WASTES
Sister Rod Examinations at ORNL for the HBU Spent Fuel Data Project
Sister Rod Examinations at ORNL for the HBU Spent Fuel Data Project
Presentation made at the Electric Power Research Institute (EPRI) Extended Storage Collaboration Project (ESCP) meeting November 2016 discussing the status of nondestructive examinations being performed on high burnup (HBU) sent nuclear fuel (SNF) rods at Oak Ridge National Laboratory and proposed destructive examinations that will be performed over the next several years.
slides - Operating Experience, Session I, Cask Cranes
slides - Operating Experience, Session I, Cask Cranes
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Characteristics of Spent Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation, Rev. 0
Characteristics of Spent Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation, Rev. 0
The purpose of this report, and the information contained in the associated computerized data bases, is to establish the DOE/OCRWM reference characteristics of the radioactive waste materials that may be accepted by DOE for emplacement in the mined geologic disposal system as developed under the Nuclear Waste Policy Act of 1982. This report provides relevant technical data for use by DOE and its supporting contractors and is not intended to be a policy document.
NRC Waste Confidence Positions
NRC Waste Confidence Positions
In response to the remand of the U.S. Court of Appeals for the District of Columbia Circuit (Minnesota v. NRC, 602 F.2d 412 (1979)), and as a continuation of previous proceedings conducted in this area by NRC (44 Fed. Reg. 61,372), the Commission initiated a generic rulemaking proceeding on October 25, 1979.
slides - Cumulative Impact of Industry and NRC Actions
slides - Cumulative Impact of Industry and NRC Actions
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Characteristics of Potential Repository Wastes
Characteristics of Potential Repository Wastes
The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for all spent fuels and high-level wastes (HLW) that will eventually be disposed of in a geologic repository. The purpose of this document, and the information contained in the associated computerized data bases and supporting technical reports, is to provide the technical characteristics of the radioactive waste materials that will (or may) be accepted by DOE for interim storage in an MRS or emplacement in a repository as developed under the Nuclear Waste Policy Act Amendment of 1987.
Transportation and Storage Subcommittee Report to the Full Commission DRAFT
Transportation and Storage Subcommittee Report to the Full Commission DRAFT
The main question before the Transportation and Storage Subcommittee was whether the United States
should change its approach to storing and transporting spent nuclear fuel (SNF) and high-level
radioactive waste (HLW) while one or more permanent disposal facilities are established.
To answer this question and to develop specific recommendations and options for consideration by the
full Commission, the Subcommittee held multiple meetings and deliberative sessions, visited several
Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor
Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor
This report presents the results of computer code benchmark simulations against spent fuel radiochemical assay
measurements from the Kansai Electric Ltd. Takahama-3 reactor published by the Japan Atomic Energy
Research Institute. Takahama-3 is a pressurized-water reactor that operates with a 17 × 17 fuel-assembly design.
Spent fuel samples were obtained from assemblies operated for 2 and 3 cycles and achieved a maximum burnup
of 47 GWd/MTU. Radiochemical analyses were performed on two rods having an initial enrichment of
Direct Disposal of Dual-Purpose Canisters - Options for Assuring Criticality Control
Direct Disposal of Dual-Purpose Canisters - Options for Assuring Criticality Control
Japan’s Spent Fuel and Plutonium Management Challenges
Japan’s Spent Fuel and Plutonium Management Challenges
Japan’s spent fuel management and fuel cycle programs are now at a critical stage. Its first commercial-scale reprocessing plant, at Rokkasho Village, will soon start full-scale operation.
Spent Fuel Project Office, ISG-8 - Limited Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, ISG-8 - Limited Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office Interim Staff Guidance - 8
An Evaluation of the Concept of Transuranic Burning Using Liquid Metal Reactors
An Evaluation of the Concept of Transuranic Burning Using Liquid Metal Reactors
This evaluation investigates the potential benefits of separating the transuranic elements from spent reactor fuel before it is disposed of in geologic repositories. It addresses the question: Would the benefits to radioactive waste disposal justify both processing the spent fuel and deploying liquid metal reactors (LMRs) to transmute the separated transuranics?
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=NP-7…
Slides - Retrievability, Cladding Integrity, and Safety Handling during Storage and Transportation
Slides - Retrievability, Cladding Integrity, and Safety Handling during Storage and Transportation
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Background Paper on Commingling of Defense and Commercial Waste
Background Paper on Commingling of Defense and Commercial Waste
Since a 1985 decision by President Reagan that a separate permanent repository for disposal of
defense high level waste was not required1, DOE has planned for disposal of all high-level waste
and spent fuel from national defense activities and DOE’s own research activities in a repository
for commercial waste developed under the Nuclear Waste Policy Act (NWPA). The Commission
has heard recommendations from some commenters2 that this decision be revisited, or even
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1
OECD/NEA Burnup Credit Criticality Benchmarks Phase IIIB: Burnup Calculations of BWR Fuel Assemblies for Storage and Transport
OECD/NEA Burnup Credit Criticality Benchmarks Phase IIIB: Burnup Calculations of BWR Fuel Assemblies for Storage and Transport
The report describes the final results of the Phase IIIB Benchmark conducted by the
Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy
Agency (NEA) of the Organization for Economic Cooperation and Development (OECD).
The Benchmark was intended to compare the predictability of current computer code and
data library combinations for the atomic number densities of an irradiated BWR fuel
assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM
Internationalization of the Nuclear Fuel Cycle
Internationalization of the Nuclear Fuel Cycle
Following the proposals for nuclear fuel assurance of International Atomic Energy
Agency (IAEA) Director General Mohamed El Baradei, former Russian President Vladimir V.
Putin, and U.S. President George W. Bush, joint committees of the Russian Academy of
Sciences (RAS) and the U.S. National Academies (NAS) were formed to address these and other
fuel assurance concepts and their links to nonproliferation goals. The joint committees also
addressed many technology issues relating to the fuel assurance concepts. This report provides
Dry Storage of Used Fuel Transition to Transport
Dry Storage of Used Fuel Transition to Transport
This report provides details of dry storage cask systems and contents in U.S. for commercial light water
reactor fuel. Section 2 contains details on the canisters used to store approximately 86% of assemblies in
dry storage in the U.S. Transport cask details for bare fuels, dual purpose casks and canister transport
casks are included in Section 3. Section 4 details the inventory of those shutdown sites without any
operating reactors. Information includes the cask type deployed, transport license and status as well as
Phenomena and Parameters Important to Burnup Credit
Phenomena and Parameters Important to Burnup Credit
Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and
parameters important to implementation of burnup credit in out-of-reactor applications involving pressurizedwater-
reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR)
spent fuel have been more limited. This paper reviews the knowledge and experience gained from work
performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis
Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel
Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel
This report has been prepared to review relevant background information and provide technical discussion that will help initiate a PIRT (Phenomena Identification and Ranking Tables) process for use of burnup credit in light-water reactor (LWR) spent fuel storage and transport cask applications. The PIRT process will be used by the NRC Office of Nuclear Regulatory Research to help prioritize and guide a coordinated program of research and as a means to obtain input/feedback from industry and other interested parties.