Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Monitored Retrievable Storage Facility Design Criteria Policy Document - 2nd Draft
Monitored Retrievable Storage Facility Design Criteria Policy Document - 2nd Draft
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of Department of Energy (DOE) standardized Spent Nuclear Fuel (SNF) canisters.
Storage of Spent Nuclear Fuel (Specific Safety Guide)
Storage of Spent Nuclear Fuel (Specific Safety Guide)
This Safety Guide provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facilities and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods that have become necessary owing to delays in the development of disposal facilities and the decrease in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup.
Assessment of Fission Product Cross-Section Data for Burnup Credit Applications
Assessment of Fission Product Cross-Section Data for Burnup Credit Applications
Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance.
Validation of important fission product evaluations through CERES integral benchmarks
Validation of important fission product evaluations through CERES integral benchmarks
Optimization of energy resources suggests increased fuel residence in reactor cores and hence improved
fission product evaluations are required. For thermal reactors the fission product cross sections in the JEF2.2 and
JEFF3.1 libraries plus new evaluations from WPEC23 are assessed through modelling the CERES experiment in
the DIMPLE reactor. The analysis uses the lattice code WIMS10. Cross sections for 12 nuclides are assessed. The
thermal cross section and low energy resonance data for 147,152Sm and 155Gd are accurate to within 4%. Similar data
Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations
Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations
U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit.
Radionuclide Screening
Radionuclide Screening
The waste forms under consideration for disposal in the repository at Yucca Mountain contain scores of radionuclides. It would be impractical and highly inefficient to model all of these radionuclides in a total system performance assessment (TSPA). Thus, the purpose of this radionuclide screening analysis is to remove from further consideration (screen out) radionuclides that are unlikely to significantly contribute to radiation dose to the public from a nuclear waste repository at Yucca Mountain.
Preclosure Consequence Analyses
Preclosure Consequence Analyses
The purpose of this calculation is to demonstrate that the preclosure performance objectives specified in 10 CFR 63.111(a) and 10 CFR 63.111(b) (Reference 2.2.1) have been met for the proposed design and operations in the geologic repository operations area (GROA) during normal operations and Category 1 event sequences, and following Category 2 event sequences. Category 1 event sequences are those natural and human-induced event sequences that are expected to occur one or more times before permanent closure of the repository.
Canister Handling Facility Criticality Safety Calculations
Canister Handling Facility Criticality Safety Calculations
This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC (Bechtel SAIC Company) 2004 (DIRS 167614).
Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF
Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of the transportation, aging and disposal (TAD) canister-based systems.
From Integral Experiments to Nuclear Data Improvement
From Integral Experiments to Nuclear Data Improvement
Target accuracy on LWR neutronics parameters is 2 to 5 times lower than the a priori uncertainty (1σ)
due to nuclear data. This paper summarizes the experimental facilities and the integral measurements that are required
for code qualification. The rigorous use of integral information through trend analysis method is described. Trends
on JEF2 data from Keff measurements and P.I.Es are presented. These trends were accounted for in the new JEFF3
evaluations. The role of fundamental experiments, such as worth measurement of separated isotopes, is emphasized.
Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada (40 CFR Part 197) -- Final Rule Response to Comments Document
Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada (40 CFR Part 197) -- Final Rule Response to Comments Document
EPA held a 90-day public comment period for the proposed radiation protection standards for Yucca Mountain (August 27, 1999 through November 26, 1999). Sixty-nine (69) sets of written comments were submitted to EPAÕs Air Docket regarding the proposed standards, although some commenters submitted more than one set of written comments. In addition, the Agency received oral testimony on the proposed standards from 28 speakers during public hearings that were held in Washington, DC; Las Vegas, NV; Amargosa Valley, NV; and Kansas City, MO.
Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada; Final Rule
Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada; Final Rule
We, the Environmental Protection Agency (EPA), are promulgating public health and safety standards for radioactive material stored or disposed of in the potential repository at Yucca Mountain, Nevada. Section 801 of the Energy Policy Act of 1992 (EnPA, Pub. L. 102Ð486) directs us to develop these standards. Section 801 of the EnPA also requires us to contract with the National Academy of Sciences (NAS) to conduct a study to provide findings and recommendations on reasonable standards for protection of the public health and safety.
Final 40 CFR 19: Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes
Final 40 CFR 19: Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes
Final 40 CFR 40 Ruling on Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel , High-Level and Transuranic Radioactive Wastes