Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
Initial Waste Package Probabilistic Criticality Analysis: Multi-Purpose Canister With Disposal Container (TBV)
Initial Waste Package Probabilistic Criticality Analysis: Multi-Purpose Canister With Disposal Container (TBV)
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to:
1. Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts;
Calculation of Upper Subcritical Limits for Nuclear Criticality in a Repository
Calculation of Upper Subcritical Limits for Nuclear Criticality in a Repository
The purpose of this document is to present the methodology to be used for development of the Subcritical Limit (SL) for post closure conditions for the Yucca Mountain repository. The SL is a value based on a set of benchmark criticality multiplier, keff> results that are outputs of the MCNP calculation method. This SL accounts for calculational biases and associated uncertainties resulting from the use of MCNP as the method of assessing kerr·
Geochemistry Model Validation Report: Material Degradation and Release Model
Geochemistry Model Validation Report: Material Degradation and Release Model
The purpose of the material degradation and release (MDR) model is to predict the fate of the waste package materials, specifically the retention or mobilization of the radionuclides and the neutron-absorbing material as a function of time after the breach of a waste package during the 10,000 years after repository closure. The output of this model is used directly to assess the potential for a criticality event inside the waste package due to the retention of the radionuclides combined with a loss of the neutron-absorbing material.
The Potential of Using Commercial Duel Purpose Canisters for Direct Disposal
The Potential of Using Commercial Duel Purpose Canisters for Direct Disposal
This report evaluates the potential for directly disposing of licensed commercial Dual Purpose
Canisters (DPCs) inside waste package overpacks without reopening. The evaluation considers
the principal features of the DPC designs that have been licensed by the Nuclear Regulatory
Commission (NRC) as these relate to the current designs of waste packages and as they relate to
disposability in the repository. Where DPC features appear to compromise future disposability,
those changes that would improve prospective disposability are identified.
Initial Radionuclide Inventories
Initial Radionuclide Inventories
The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only.
Dry Storage of Used Fuel Transition to Transport
Dry Storage of Used Fuel Transition to Transport
This report provides details of dry storage cask systems and contents in U.S. for commercial light water
reactor fuel. Section 2 contains details on the canisters used to store approximately 86% of assemblies in
dry storage in the U.S. Transport cask details for bare fuels, dual purpose casks and canister transport
casks are included in Section 3. Section 4 details the inventory of those shutdown sites without any
operating reactors. Information includes the cask type deployed, transport license and status as well as
Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life
Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life
Dry cask storage systems are deployed at nuclear power plants for used nuclear fuel (UNF)
Dry Cask Storage and Transportation Burnup Credit
Dry Cask Storage and Transportation Burnup Credit
Issues for Effective Implementation of Burnup Credit
Issues for Effective Implementation of Burnup Credit
In the United States, burnup credit has been used in the criticality safety evaluation for storage pools at
pressurized water reactors (PWRs) and considerable work has been performed to lay the foundation for use of
burnup credit in dry storage and transport cask applications and permanent disposal applications. Many of the
technical issues related to the basic physics phenomena and parameters of importance are similar in each of these
applications. However, the nuclear fuel cycle in the United States has never been fully integrated and the
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
This report describes the actions taken in Argentina on the safety of spent fuel management
(SF) and on the safety of radioactive waste management, in order to provide evidence of the
fulfillment of its obligations under the Joint Convention. To facilitate the reading and a better
understanding of this report a summary of those parts of the 1st Report that were considered
necessary have been included.
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT THIRD NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT THIRD NATIONAL REPORT
The present National Report describes the actions taken in Argentina on the safety of spent fuel
(SF) management and on the safety of radioactive waste (RW) management, in order to provide
evidence of the fulfilment of the obligations derived from the Joint Convention. To facilitate the
reading and a better understanding, it has been decided to include a summary of those parts of
the two prior National Reports that are considered necessary in order to comply with this
objective.
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
The Problem of used nuclear fuel: lessons for interim solutions from a comparative cost analysis
The Problem of used nuclear fuel: lessons for interim solutions from a comparative cost analysis
An acceptable long-term solution for used (spent) fuel from nuclear power reactors has evaded all countries engaged in the civilian
nuclear fuel cycle. Furthermore, many countries are trying to develop interim storage solutions that address the shortage of storage in
the spent fuel cooling pools at reactors. The United States has a particularly acute problem due to its adherence to an open fuel cycle
and its large number of reactors. Two main options are available to address the spent fuel problem: dry storage on-site at reactors and
Selection of Away-From-Reactor Facilities for Spent Nuclear Fuel Storage
Selection of Away-From-Reactor Facilities for Spent Nuclear Fuel Storage
With the continuing accumulation of spent fuel at reactor sites, the demand for additional storage of spent fuel at AFR (away from reactor) facilities is growing. It is an issue for most Member States generating nuclear power, including those countries pursuing reprocessing. There are a diversity of technical options and services available which offer competitive, reliable solutions to meet the storage requirements. In particular, dry storage technologies have been widely applied.
Dry Cask Storage of Nuclear Spent Fuel
Dry Cask Storage of Nuclear Spent Fuel
Dry Cask Storage of Nuclear Spent Fuel
Dry Cask Storage of Nuclear Spent Fuel
This presentation was given by Earl Easton at the 2011 National State Liaison Officers Conference in Bethesda, MD.
The presentation highlights the current state of spent nuclear fuel as well as the progress toward its ultimate disposal.
Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel
Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel
As nuclear power plants began to run out of storage capacity in spent nuclear fuel (SNF) storage pools, many nuclear operating companies added higher density pool storage racks to increase pool capacity. Most nuclear power plant storage pools have been re-racked one or more times. As many spent fuel storage pools were re-racked to the maximum extent possible, nuclear operating companies began to employ interim dry storage technologies to store SNF in certified casks and canister-based systems outside of the storage pool in independent spent fuel storage installations (ISFSIs).
Thermal Management Flexibility Analysis
Thermal Management Flexibility Analysis
The purpose of this report is to demonstrate that postclosure temperature limits can be met, and certain thermal characteristics of the postclosure thermal reference case can be preserved, with alternative thermal loading schemes. The analysis considers certain variations from the base case.waste stream, the predicted postclosure temperatures that develop within the rock mass due to these waste stream variations, and then compares these temperatures to postclosure temperature limits.
Safety and Security of Commercial Spent Nuclear Fuel Storage: Public Report - Summary
Safety and Security of Commercial Spent Nuclear Fuel Storage: Public Report - Summary
At the request of the U.S. Congress, the National Academies assessed the safety and
security of spent nuclear fuel stored in pools and dry casks at commercial nuclear power
plants in the United States. The public report can be viewed on the National Academies
Press website at http://books.nap.edu/catalog/11263.html.
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.
Initial Waste Package Probabilistic Criticality Analysis: Uncanistered Fuel
Initial Waste Package Probabilistic Criticality Analysis: Uncanistered Fuel
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to:
1. Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts;
Configuration Model Generator
Configuration Model Generator
The Disposal Criticality Analysis Methodology Topical Reporta prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the Configuration Generator Model for In-Package Criticality that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state.
Aging and Phase Stability of Waste Package Outer Barrier
Aging and Phase Stability of Waste Package Outer Barrier
This report was prepared in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 221, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate.