DECOMMISSIONING COST ANALYSIS for the CLINTON POWER STATION
DECOMMISSIONING COST ANALYSIS for the CLINTON POWER STATION
<div class="page" title="Page 1">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
A set of 16 geologic disposal concepts is described in sufficient detail for rough-order-of-magnitude repository cost estimates, for disposal of spent nuclear reactor fuel in generic crystalline, argillaceous, and salt host geologic media. The description includes total length, diameter, and volume for all underground shafts, ramps, drifts and large-diameter borings. Basic types of ground support are specified. Total repository capacity is assumed to be approximately 140,000 MT of spent fuel, but concepts are described in terms of modular panels each containing 10,000 MT.
This report provides - a detailed description of the Austrian policy and the usual practices concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section B); - a detailed description of the Austrian legal regime concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section E).
In Austria there is neither a nuclear power plant (NPP) nor any other fuel cycle facility in op- eration. One NPP was constructed in Zwentendorf in the 1970s, but, as a consequence of the negative vote in a referendum never put into operation. Two out of three research reactors in Austria have been shut down (ASTRA Seibersdorf in 2000, SIEMENS Argonaut Graz in 2004) and are currently under decommissioning. The remaining TRIGA research reactor in Vienna is still in operation. Spent nuclear fuel is stored on site in wet or dry storage facilities.
1. Recognizing the importance of the safe management of spent nuclear fuel and radioactive waste, the international community agreed upon the necessity of adopting a convention describing how such safe management could be achieved: this was the origin of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (the “Joint Convention”), which was adopted on 5 September 1997 and entered into force on 18 June 2001. 2.
1. Recognizing the importance of the safe management of spent nuclear fuel and radioactive waste, the international community agreed upon the necessity of adopting a convention with the objective of achieving and maintaining a high level of safety worldwide in spent fuel and radioactive waste management: this was the origin of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (the “Joint Convention”), which was adopted on 5 September 1997 and entered into force on 18 June 2001. 2.
1. Recognizing the importance of the safe management of spent nuclear fuel and radioactive waste, the international community agreed upon the necessity of adopting a convention with the objective of achieving and maintaining a high level of safety worldwide in spent fuel and radioactive waste management: this was the origin of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (the “Joint Convention”), which was adopted on 5 September 1997 and entered into force on 18 June 2001. 2.
1. The operation of nuclear reactors whether for the purposes of electricity production or research, generates spent nuclear fuel and radioactive waste. Other activities also generate radioactive waste. The recognition by the international community of the importance of ensuring the safety of the management of spent fuel and the safety of the management of radioactive waste, led to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Convention).