Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
This analysis is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having some or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment.
Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition (NUREG-75/087)
Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition (NUREG-75/087)
The Standard Review Plan (SRP) is prepared for the guidance of staff reviewers in the Office of Nuclear Reactor Regulation in performing safety reviews of applications to construct or operate nuclear power plants. The principal purpose of the SRP is to assure the quality and uniformity of staff reviews, and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews.
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
This guidance manual provides the NRC staff methodology for calculating parameters for limiting conditions of operation required in the radiological effluent Technical Specifications for light-water-cooled nuclear power plants. it provides guidance in using the model specifications reported in NUREG-0472 (Revision 1)*, and NUREG-0473 (Revision 1)*, applicable to operating PWR and BWR licensees, and users of the Standard Technical Specifications packages available for various vendor designs.
Underlying Yucca Mountain: The Interplay of Geology and Policy in Nuclear Waste Disposal
Underlying Yucca Mountain: The Interplay of Geology and Policy in Nuclear Waste Disposal
Nuclear waste disposal in the USA is a difficult policy issue infused with
science, technology, and politics. This issue provides an example of the co-production
of scientific knowledge and politics through public policy. The proponents of a
repository site at Yucca Mountain, Nevada, argue that their decision to go ahead
with the site is based on ‘sound science’, but the science they use to uphold their
decision is influenced by politics. In turn, the politics of site selection has been altered
Partnering for Long-term Management of Radioactive Waste-Evolution and Current Practice in Thirteen Countries
Partnering for Long-term Management of Radioactive Waste-Evolution and Current Practice in Thirteen Countries
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss (Me203) on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/ burnup pairs expected for the MOX SNF.
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
The purpose of this document is to provide the requirements rationale for the current version of the Preliminary Transportation, Aging and Disposal Canister System Performance Specification; WMO-TADCS-000001.
What We've Heard - A Staff Summary of Major Themes in Testimony and Comments Received by the Blue Ribbon Commission on America’s Nuclear Future to Date
What We've Heard - A Staff Summary of Major Themes in Testimony and Comments Received by the Blue Ribbon Commission on America’s Nuclear Future to Date
The Commission is charged with submitting a
draft report to the Secretary of Energy before
the end of July 2011. To aid the Commissioners
in fulfilling that responsibility, the Commission
staff has prepared this report to summarize what
the Commission has heard up to this point in
the process. It does not attempt to recount every
comment or opinion submitted to the Commission
thus far; rather, the aim here is to summarize
major themes from the extensive testimony and
public comment the Commission has received to
EQ6 Calculations for Chemical Degradation of Pu-Ceramic Waste Packages
EQ6 Calculations for Chemical Degradation of Pu-Ceramic Waste Packages
In this study, the long-term geochemical behavior of waste package (WP), containing Pu-ceramic, was modeled. The ceramic under consideration contains Ti, U, Pu, Gd and Hf in a pyrochlore structure; the Gd and Hf stabilize the mineral structure, but are also intended to provide criticality control. The specific study objectives were to determine:
1) the extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial package configuration (such that it can be effective in preventing criticality), and
Letter to The Honorable Dr. Steven Chu, Secretary of Energy - Blue Ribbon Commission request for approval to establish and populate the three subcommittees.
Letter to The Honorable Dr. Steven Chu, Secretary of Energy - Blue Ribbon Commission request for approval to establish and populate the three subcommittees.
Dear Secretary Chu:
Thank you for your remarks to the Blue Ribbon Commission on America’s Nuclear Future at our inaugural meeting on March 25, 2010. Your guidance was both enlightening and invaluable as we establish a plan to fulfill the Commission’s charter.
TRIGA Fuel Phase I and II Criticality Calculation
TRIGA Fuel Phase I and II Criticality Calculation
The purpose of this calculation is to characterize the criticality aspect of the codisposal of TRIGA (Training, Research, Isotopes, General Atomic) reactor spent nuclear fuel (SNF) with Savannah River Site (SRS) high-level waste (HLW). The TRIGA SNF is loaded into a Department of Energy (DOE) standardized SNF canister which is centrally positioned inside five-canister defense SRS HLW waste package (WP). The objective of the calculation is to investigate the criticality issues for the WP containing the five SRS HLW and DOE SNF canisters in various stages of degradation.
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having some or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment.
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF.
Earning Public Trust and Confidence: Requisites for Managing Radioactive Wastes
Earning Public Trust and Confidence: Requisites for Managing Radioactive Wastes
This is the final report of the Secretary of Energy Advisory Board Task Force on Radioactive Waste Management, published in November 1993.
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculation: Intact SNF Canister
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculation: Intact SNF Canister
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.
Radiolytic Specie Generation from Internal Waste Package Criticality
Radiolytic Specie Generation from Internal Waste Package Criticality
The effects of radiation on the corrosion of various metals and alloys, particularly with respect to in-reactor processes, has been discussed by a number of authors (Shoesmith and King 1998, p.2). Shoesmith and King (1998) additionally discuss the effects of radiation of the proposed Monitored Geologic Repository (MGR) Waste Package (WP) materials. Radiation effects on the corrosion of metals and alloys include, among other things, radiolysis of local gaseous and aqueous environments lead to the fixation of nitrogen as NO, NO2, and especially HN03 (Reed and Van Konynenburg 1988, pp.
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
WP 2 Appendix 10 Balance of Power: Principles and Good Practices for Local Stakeholders to Influence National Decision-making Processes
WP 2 Appendix 10 Balance of Power: Principles and Good Practices for Local Stakeholders to Influence National Decision-making Processes
Our basic position is that the outcomes of policy-making in radioactive waste management (RWM) should be driven by the will of the people through democratic processes. Achieving this inclusiveness requires good practices to increase local influence on what is essentially a national policy process. However inclusiveness poses significant practical problems; can society afford lengthy and costly consultation processes, often perceived as inefficient and ineffective?
POSITION PAPER ON PUBLIC AND STAKEHOLDER ENGAGEMENT
POSITION PAPER ON PUBLIC AND STAKEHOLDER ENGAGEMENT
This document does not present the views of the Committee on Radioactive Waste Management nor can it be taken to present the views of its author. It is a draft paper to inform Committee deliberations and both the author and the whole Committee may adopt different views and draw entirely different conclusions after further consideration and debate
POSITION PAPER ON PUBLIC AND STAKEHOLDER ENGAGEMENT for Discussion and Decision
POSITION PAPER ON PUBLIC AND STAKEHOLDER ENGAGEMENT for Discussion and Decision
This document does not present the views of the Committee on Radioactive Waste Management nor can it be taken to present the views of its author. It is a draft paper to inform Committee deliberations and both the author and the whole Committee may adopt different views and draw entirely different conclusions after further consideration and debate
Emergence of Collective Action and Environmental Networking in Relation to Radioactive Waste Management
Emergence of Collective Action and Environmental Networking in Relation to Radioactive Waste Management
This paper explores the relationship between the national environmental movement and nuclear technology in relation to a local emergent group. The historical development of nuclear technology in this country has followed a path leading to continued fear and mistrust of waste management by a portion of the population. At the forefront of opposition to nuclear technology are people and groups endorsing environmental values.
End of FY10 Report – Used Fuel Disposition Technical Bases and Lessons Learned Legal and Regulatory Framework for High-Level Waste Disposition in the United States
End of FY10 Report – Used Fuel Disposition Technical Bases and Lessons Learned Legal and Regulatory Framework for High-Level Waste Disposition in the United States
This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development.
Everything You Ever Wanted to Know about Radioactive Waste Management
Everything You Ever Wanted to Know about Radioactive Waste Management
Explanation of Radioactivity and Radioactive waste
Multiattribute Utility Analysis as a Framework for Public Participation: Siting a Hazardous Waste Facility
Multiattribute Utility Analysis as a Framework for Public Participation: Siting a Hazardous Waste Facility
In an attempt to facilitate the resolution of contentious environmental problems, public agencies are increasingly using collaborative approaches wherein stakeholders participate in the decision-making process. A dilemma for the design of collaborative approaches is the technical complexity of many environmental problems. How can members of the public play a meaningful role in decisions that involve complicated scientific arguments?