Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Abstraction of Drift Seepage
Abstraction of Drift Seepage
This model report documents the abstraction of drift seepage, conducted to provide seepage relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts.
Evaluation of Waste Stream Receipt Scenarios for Repository Loading
Evaluation of Waste Stream Receipt Scenarios for Repository Loading
The purpose of this calculation is to simulate the processing of an incoming waste stream into waste packages, simulating the required aging as applicable, and the emplacement of the waste packages into the Yucca Mountain repository.
International Comparison of a Depletion Calculation Benchmark on Fuel Cycle Issues - Results from Phase 1 on UOx Fuels
International Comparison of a Depletion Calculation Benchmark on Fuel Cycle Issues - Results from Phase 1 on UOx Fuels
Although there are many reactor system benchmarks in the literature, they mostly
concentrate on the reactor system in isolation with only a few considering the fuel cycle.
However, there is currently increased emphasis on the performance of reactor systems
linked to their associated fuel cycle (Generation-IV for example). The published
international benchmark studies which relate to burn-up depletion calculations are
restricted to specific aspects of the fuel cycle:
Drift Scale THM Model
Drift Scale THM Model
This model report documents the drift scale coupled thermal-hydrological-mechanical (THM) processes model development and presents simulations of the THM behavior in fractured rock close to emplacement drifts. The modeling and analyses are used to evaluate the impact of THM processes on permeability and flow in the near-field of the emplacement drifts.
Thermal Management Flexibility Analysis
Thermal Management Flexibility Analysis
The purpose of this report is to demonstrate that postclosure temperature limits can be met, and certain thermal characteristics of the postclosure thermal reference case can be preserved, with alternative thermal loading schemes. The analysis considers certain variations from the base case.waste stream, the predicted postclosure temperatures that develop within the rock mass due to these waste stream variations, and then compares these temperatures to postclosure temperature limits.
Waste Packages and Source Terms for the Commercial 1999 Design Basis Waste Streams
Waste Packages and Source Terms for the Commercial 1999 Design Basis Waste Streams
This calculation is prepared by the Monitored Geologic Repository Waste Package Requirements & Integration Department. The purpose of this calculation is to compile source term and commercial waste stream information for use in the analysis of waste package (WP) designs for commercial fuel. Information presented will consist of the number of WPs, source terms, metric tons of uranium, and the average characteristics of assemblies to be placed in each WP design. The source terms provide thermal output, radiation sources, and radionuclide inventories.
Thermal Loading Study of the TAD Waste Package
Thermal Loading Study of the TAD Waste Package
The objective of this calculation is to evaluate the peak temperatures due to thermal loading and boundary conditions of the TAD Waste Package design under nominal Monitored Geologic Repository conditions.
Aging and Phase Stability of Waste Package Outer Barrier
Aging and Phase Stability of Waste Package Outer Barrier
This report was prepared in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 221, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate.
Design Evolution Study: Thermal Operating Methodology
Design Evolution Study: Thermal Operating Methodology
This study provides results supporting the conclusion that the repository can be operated over a varying range of thermal modes and therefore temperatures. In particular, this work focused on limiting the peak, postclosure waste package surface temperature to less than 85 degrees Celsius, a possible limit due to corrosion considerations. These operating modes were compared by varying the waste package in drift spacing (0.1-2.83 meters), drift pitch (drift spacing centerline to centerline of 40-120 meters), ventilation duration (75-300 years), and ventilation efficiency (50-80%).
Multiscale Thermohydrologic Model
Multiscale Thermohydrologic Model
The intended purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. The goal of the MSTHM is to predict a reasonable range of possible thermal-hydrologic conditions within the emplacement drift.
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
This evaluation is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide analyses of disposal of aluminum (AI)-based Department of Energy-owned research reactor spent nuclear fuel (DOE-SNF) in a codisposal waste package with five canisters of high-level waste (HLW). The analysis was performed in sufficient detail to establish the technical viability of the Al-based DOE-SNF codisposal canister option.
Postclosure Analysis of the Range of Design Thermal Loadings
Postclosure Analysis of the Range of Design Thermal Loadings
This report presents a two-phased approach to develop and analyze a “thermal envelope” to represent the postclosure response of the repository to the anticipated range of repository design thermal loadings. In Phase 1 an estimated limiting waste stream (ELWS) is identified and analyzed to determine the extremes of average and local thermal loading conditions. The coldest thermal loading condition is represented by an emplacement drift loaded exclusively with high-level radioactive waste (HLW) and/or defense spent nuclear fuel (DSNF).
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
The objective of this calculation is to determine the structural response of the 5-DHLW/DOE (Defense High Level Waste/Department of Energy) SNF (Spent Nuclear Fuel) Short Co-disposal Waste Package (WP) when subjected (while in the horizontal orientation emplaced in the drift) to a collision by a loaded (with WP) Transport and Emplacement Vehicle (TEV) due to an over-run. The scope of this calculation is limited to reporting the calculation results in terms of maximum total stress intensities (Sis) in the outer corrosion barrier (dCB).
Fuel Cycle Potential Waste Inventory for Disposition
Fuel Cycle Potential Waste Inventory for Disposition
The purpose of this report is to provide an estimate of potential waste inventory and waste form
characteristics for the DOE UNF and HLW and a variety of commercial fuel cycle alternatives in order to
support subsequent system-level evaluations of disposal system performance. This report is envisioned as
a “living document” which will be revised as specific alternative fuel cycles are developed
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT'">This report fulfills the M1 milestone M11UF041401, “Storage R&D Opportunities Report” under Work Package Number FTPN11UF0414. </span></p>
The Future of Nuclear Power: An Interdisciplinary MIT Study (2003)
The Future of Nuclear Power: An Interdisciplinary MIT Study (2003)
"This study analyzes what would be required to retain nuclear power as a significant option for reducing greenhouse gas emissions and meeting growing needs for electricity supply. Our analysis is guided by a global growth scenario that would expand current worldwide nuclear generating capacity almost threefold, to 1000 billion watts, by the year 2050. Such a deployment would avoid 1.8 billion tonnes of carbon emissions annually from coal plants, about 25% of the increment in carbon emissions otherwise expected in a business-as-usual scenario.
The Future of the Nuclear Fuel Cycle: An Interdisciplinary MIT Study
The Future of the Nuclear Fuel Cycle: An Interdisciplinary MIT Study
"In 2003 MIT published the interdisciplinary study The Future of Nuclear Power. The underlying motivation was that nuclear energy, which today provides about 70% of the “zero”-carbon electricity in the U.S., is an important option for the market place in a low-carbon world. Since that report, major changes in the U.S. and the world have taken place as described in our 2009 Update of the 2003 Future of Nuclear Power Report. Concerns about climate change have risen: many countries have adopted restrictions on greenhouse gas emissions to the atmosphere, and the U.S.
Nuclear Power Joint Fact-Finding
Nuclear Power Joint Fact-Finding
"Nuclear power has long been controversial; consequently, the debate about its reemergence requires a fresh assessment of the facts about the technology, its economics and regulatory oversight, and the risks and benefits of its expansion. In the past year, the Keystone Center assembled a group of 27 individuals (see the Endorsement page for a list of Participants) with extensive experience and unique perspectives to develop a joint understanding of the “facts” and for an objective interpretation of the most credible information in areas where uncertainty persists.
The Future of the Nuclear Fuel Cycle: An Interdisciplinary MIT Study, Summary Report
The Future of the Nuclear Fuel Cycle: An Interdisciplinary MIT Study, Summary Report
<strong>This is a summary report. The full report is <a href="https://curie.ornl.gov/content/future-nuclear-fuel-cycle-interdisciplin…;
A review of the Nuclear Waste Disposal Problem
A review of the Nuclear Waste Disposal Problem
Dealing with the problems posed by nuclear waste management is a major issue confronting continued use of the nuclear fuel cycle. Large amounts of radioactive wastes have already been generated as a result of past nuclear reactor operations, but these wastes are being temporarily kept in aboveground storage facilities awaiting a government policy decision on final disposition. Although research on various technologies to dispose of radioactive wastes is given high priority, a commercial waste disposal facility is not expected to be in operation before 1985.
Global Nuclear Energy Partnership
Global Nuclear Energy Partnership
GNEP Presentation to 2008 ECA Annual Conference
Closing the US Fuel Cycle: Siting Considerations for the Global Nuclear Energy Partnership Facilities-Siting the Advanced Fuel Cycle Facility
Closing the US Fuel Cycle: Siting Considerations for the Global Nuclear Energy Partnership Facilities-Siting the Advanced Fuel Cycle Facility
The Global Nuclear Energy Partnership (GNEP), launched in February, 2006, proposes to introduce used nuclear fuel recycling in the United States (U.S.) with improved proliferation-resistance and a more effective waste management approach. This program is evaluating ways to close the fuel cycle in a manner that introduces the most advanced technologies of today and builds on recent breakthroughs in U.S. national laboratories while drawing on international and industry partnerships.
IAEA Information Circular - Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management
IAEA Information Circular - Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management
1. The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management was adopted on 5 September 1997 by a Diplomatic Conference convened by the International Atomic Energy Agency at its headquarters from 1 to 5 September 1997. The Joint Convention was opened for signature at Vienna on 29 September 1997 during the forty-first session of the General Conference of the International Atomic Energy Agency and will remain open for signature until its entry into force. 2.
Summary of National and International Radioactive Waste Management Programs 1979
Summary of National and International Radioactive Waste Management Programs 1979
Many nations and international agencies are working to develop improved technology and industrial capability for nuclear fuel cycle and waste management operations. The effort in some countries is limited to research in university laboratories on treating low-level waste from reactor plant operations.