Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
Options for Developing Public and Stakeholder Engagement for the Storage and Management of Spent Nuclear Fuel (SNF) and High Lievel Waste (HLW) in the United States
Options for Developing Public and Stakeholder Engagement for the Storage and Management of Spent Nuclear Fuel (SNF) and High Lievel Waste (HLW) in the United States
This report puts forth a number of options and recommendations for how to engage
stakeholders and other members of the public in the storage and management of spent
nuclear fuel and high level waste in the United States. The options are generated from a
scientific review of existing publications proposing criteria for assessing past efforts to
engage publics and stakeholders in decision-making about risky technologies. A set of
nine principles are derived for evaluating cases of public and stakeholder engagement with
Options for Developing Public and Stakeholder Engagement for the Storage and Management of Spent Nuclear Fuel (SNF) and High Level Waste (HLW) in the United States
Options for Developing Public and Stakeholder Engagement for the Storage and Management of Spent Nuclear Fuel (SNF) and High Level Waste (HLW) in the United States
This report puts forth a number of options and recommendations for how to engage
stakeholders and other members of the public in the storage and management of spent
nuclear fuel and high level waste in the United States. The options are generated from a
scientific review of existing publications proposing criteria for assessing past efforts to
engage publics and stakeholders in decision-making about risky technologies. A set of
nine principles are derived for evaluating cases of public and stakeholder engagement with
The Final Report of the West Cumbria Managing Radioactive Waste Safely Partnership
The Final Report of the West Cumbria Managing Radioactive Waste Safely Partnership
The West Cumbria Managing Radioactive Waste Safely (MRWS) Partnership was set up
to consider the issues that would be involved in taking part in a search to see if there is
anywhere in the Allerdale and/or Copeland areas suitable for a repository for higher activity
radioactive waste.
Over the last three years we have looked at reports and literature, heard from experts in the
field, commissioned independent research and invited reviews by independent experts.
We have placed a high priority on public and stakeholder engagement (PSE), carrying out
Innovative Stakeholder Involvement Processes in Department of Energy Programs - A Selective Accounting
Innovative Stakeholder Involvement Processes in Department of Energy Programs - A Selective Accounting
The Blue Ribbon Commission staff requested this paper cataloging innovative stakeholder involvement programs within the Department of Energy (DOE). I reviewed a variety of material on public involvement, including papers and presentations on stakeholder involvement in DOE programs, published presentations and comments to the BRC, and research reports on stakeholder and public involvement.
Isotopic Generation and Verification of the PWR Application Model
Isotopic Generation and Verification of the PWR Application Model
The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the Disposal Criticality Analysis Methodology Topical Report (YMP 2000).
Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package
Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package
The purpose of this calculation is to evaluate the transient behavior and consequences of a worst- case criticality event involving intact pressurized water reactor (PWR) mixed-oxide (MOX) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR waste package (WP). This calculation will provide information necessary for demonstrating that the consequences of a worst-case criticality event involving intact PWR MOX SNF are insignificant in their effect on the overall radioisotopic inventory and on the integrity of the repository.
Options for Developing Public and Stakeholder Engagement for the Storage and Management of Spent Nuclear Fuel (SNF) and High Level Waste (HLW) in the United States
Options for Developing Public and Stakeholder Engagement for the Storage and Management of Spent Nuclear Fuel (SNF) and High Level Waste (HLW) in the United States
This report puts forth a number of options and recommendations for how to engage
stakeholders and other members of the public in the storage and management of spent
nuclear fuel and high level waste in the United States. The options are generated from a
scientific review of existing publications proposing criteria for assessing past efforts to
engage publics and stakeholders in decision-making about risky technologies. A set of
nine principles are derived for evaluating cases of public and stakeholder engagement with
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the “end-effect”. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package.
Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package
Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package
The purpose of this analysis is to evaluate the transient behavior and consequences of a worst case criticality event involving intact pressurized water reactor (PWR) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR assembly waste package (WP). The objective of this analysis is to demonstrate that the consequences of a worst case criticality event involving intact PWR SNF are insignificant in their effect on the overall radioisotopic inventory in a WP. An internal WP criticality is modeled in a manner analogous to transient phenomena in a nuclear reactor core.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to
Stakeholder Confidence in Radioactive Waste Management: An Annotated Glossary of Key Terms
Stakeholder Confidence in Radioactive Waste Management: An Annotated Glossary of Key Terms
The OECD Nuclear Energy Agency (NEA) Forum on Stakeholder Confidence (FSC) acts as a centre for informed exchange of knowledge and experience regarding stakeholder interaction and public participation in radioactive waste management. It promotes an open discussion among members and stakeholders, across institutional boundaries, and between technical and non-technical actors, in an atmosphere of trust and mutual respect. As such, the FSC is, first and foremost, a learning organisation.
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degradedmode criticality performance.
WP 2 Appendix 10 Balance of Power: Principles and Good Practices for Local Stakeholders to Influence National Decision-making Processes
WP 2 Appendix 10 Balance of Power: Principles and Good Practices for Local Stakeholders to Influence National Decision-making Processes
Our basic position is that the outcomes of policy-making in radioactive waste management (RWM) should be driven by the will of the people through democratic processes. Achieving this inclusiveness requires good practices to increase local influence on what is essentially a national policy process. However inclusiveness poses significant practical problems; can society afford lengthy and costly consultation processes, often perceived as inefficient and ineffective?
POSITION PAPER ON PUBLIC AND STAKEHOLDER ENGAGEMENT
POSITION PAPER ON PUBLIC AND STAKEHOLDER ENGAGEMENT
This document does not present the views of the Committee on Radioactive Waste Management nor can it be taken to present the views of its author. It is a draft paper to inform Committee deliberations and both the author and the whole Committee may adopt different views and draw entirely different conclusions after further consideration and debate
POSITION PAPER ON PUBLIC AND STAKEHOLDER ENGAGEMENT for Discussion and Decision
POSITION PAPER ON PUBLIC AND STAKEHOLDER ENGAGEMENT for Discussion and Decision
This document does not present the views of the Committee on Radioactive Waste Management nor can it be taken to present the views of its author. It is a draft paper to inform Committee deliberations and both the author and the whole Committee may adopt different views and draw entirely different conclusions after further consideration and debate
Guidance on the Selection of PTA Tools: For Stakeholders involved in Radioactive Waste Governance WP1
Guidance on the Selection of PTA Tools: For Stakeholders involved in Radioactive Waste Governance WP1
This research on "e;Guidance on the selection of PTA tools for stakeholders involved in radioactive waste governance"e; was performed under the umbrella of COWAM2-'Work Package 1' (WP1). Through a dialogue on enhancing involvement at a local level, WP1 allows local stakeholders to examine the issues they face in building a democratic local governance process. WP1 also tests how Participatory Technology Assessment (PTA) methods can offer a consensual framework and a platform for deliberative co-decision among scientific and societal actors at the local level.
Tools for Local Stakeholders in Radioactive Waste Governance: Challenges and Benefits of Selected PTA Techniques WP1
Tools for Local Stakeholders in Radioactive Waste Governance: Challenges and Benefits of Selected PTA Techniques WP1
The investigation consists of three parts and shall provide an input to the – empirical – PTA-2 study to be undertaken by SCK•CEN (called “lens”):<br>A. Compilation of – selected – existing PTA methods and procedures identifying requisites, practices, benefits, and challenges to answer the key questions in the context of WP1 about a PTA “toolbox”: “What can you apply, when can you apply, and what is needed to apply?” The multi-dimensional context of a possible “PTA situation” is analysed; suitable and nonsuitable methods, techniques and procedures are discussed.<br>B.
Reflections on Siting Approaches for Radioactive Waste Facilities: Synthesising Principles Based on International Learning
From Information and Consultation to Citizen Influence and Power: 10-year Evolution in Public Involvement in Radioactive Waste Management
Quality of Decision-making Processes: Decision-making processes in Radioactive Waste Governance - Insights and Recommendations WP3
Quality of Decision-making Processes: Decision-making processes in Radioactive Waste Governance - Insights and Recommendations WP3
Work Package 3 (WP 3) set out to provide practical recommendations for the design and implementation of a “robust” decision-making process (DMP) in radioactive waste governance/governance of radioactive waste management (RWG).