Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Presentation made at IAEA on A Unified Spent Nuclear Fuel (SNF) Database and Analysis System
Presentation made at IAEA on A Unified Spent Nuclear Fuel (SNF) Database and Analysis System
Presentation made at International Conference on The Management of Spent Nuclear Fuel from Nuclear Power Reactors, An Integrated approach to the Back-End of the Fuel Cycle (IAEA-CN-226). The purpose of the conference was to highlight the importance of an integrated long-term approach to the management of spent fuel from nuclear power reactors.
Japan’s Spent Fuel and Plutonium Management Challenges
Japan’s Spent Fuel and Plutonium Management Challenges
Japan’s spent fuel management and fuel cycle programs are now at a critical stage. Its first commercial-scale reprocessing plant, at Rokkasho Village, will soon start full-scale operation.
Improved Radiochemical Assay Analyses Using TRITON Depletion Sequences in SCALE
Improved Radiochemical Assay Analyses Using TRITON Depletion Sequences in SCALE
Locating a radioactive waste repository in the ring of fire
Locating a radioactive waste repository in the ring of fire
The scientific, technical, and sociopolitical challenges of finding a secure site for a geological repository for radioactive wastes have created a long and stony path for many countries. Japan carried out many years of research and development before taking its first steps in site selection.
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Project Overview Report
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Project Overview Report
As outlined in the overall program for high-level waste (HLW) management in Japan, defined by the Atomic Energy Commission (AEC), HWL separated from spent nuclear fuel during reprocessing will be immobilized in a glass matrix and stored for a period of 30 to 50 years to allow cooling; it will then be disposed of in a stable deep geological formation.
Evaluating Site Suitability for a HLW Repository
Evaluating Site Suitability for a HLW Repository
The primary objective of government policy, and of NUMO in implementing this policy, is to
ensure that a repository for Japan’s high-level radioactive waste is located so as to provide
secure isolation of the waste and adequate safety for present and future generations. This
means that the site has to be chosen carefully, taking full account of all its characteristics. In
order to address these characteristics in an orderly and structured manner, we have established
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Supplementary Report Background of Geologic Disposal
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Supplementary Report Background of Geologic Disposal
Radioactive waste is produced from a wide range of human activities. The wastes arising from the nuclear fuel cycle occur as a wide range of materials and in many different physical and chemical forms, contaminated with varying activities of radionuclides. Their common feature is the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The safe disposal of radioactive waste is a key reequirement of the nuclear industry worldwide.
The NUMO Structured Approach to HLW Disposal in Japan
The NUMO Structured Approach to HLW Disposal in Japan
The constraints set by the Japanese HLW disposal programme – particularly associated with
the decision to initiate siting by an open call for volunteers to host a geological repository –
pose particular challenges for repository project management. In order to maintain the
flexibility required to respond to the conditions found at volunteer sites, NUMO has not
published reference designs or site characterisation plans, as is normal for programmes
progressing by site nomination. Instead, we have developed a methodology – the NUMO
Assessment of Benefits for Extended Burnup Credit in Transporting PWR Spent Nuclear Fuel in the USA
Assessment of Benefits for Extended Burnup Credit in Transporting PWR Spent Nuclear Fuel in the USA
This paper presents an assessment of the benefits for extended burnup credit in transporting
pressurized-water-reactor (PWR) spent nuclear fuel (SNF) in the United States. A prototypic 32-
assembly cask and the current regulatory guidance were used as bases for this assessment. By
comparing recently released PWR discharge data with actinide-only-based loading curves, this
evaluation shows that additional negative reactivity (through either increased credit for fuel burnup or
Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges
Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges
Following the proposals for nuclear fuel assurance of International Atomic Energy
Agency (IAEA) Director General Mohamed ElBaradei, former Russian President Vladimir V.
Putin, and U.S. President George W. Bush, joint committees of the Russian Academy of
Sciences (RAS) and the U.S. National Academies (NAS) were formed to address these and other
fuel assurance concepts and their links to nonproliferation goals. The joint committees also
addressed many technology issues relating to the fuel assurance concepts. This report provides
U.S. Regulatory Recommendations for Actinide-Only Burnup Credit in Transport and Storage Casks
U.S. Regulatory Recommendations for Actinide-Only Burnup Credit in Transport and Storage Casks
In July 1999, the U.S. Nuclear Regulatory Commission (NRC) Spent Fuel Project Office
(SFPO) issued Interim Staff Guidance 8 Revision 1 (ISG8R1) to provide recommendations for the use
of burnup credit in storage and transport of pressurized-water reactor (PWR) spent fuel. Subsequent to
the issuance of ISG8R1, the NRC Office of Regulatory Research (RES) has directed an effort to
investigate the technical basis for extending the criteria and recommendations of ISG8R1 to allow
A Coordinated U.S. Program to Address Full Burnup Credit in Transport and Storage Casks
A Coordinated U.S. Program to Address Full Burnup Credit in Transport and Storage Casks
The benefits of burnup credit and the technical issues associated with utilizing burnup credit in spent
nuclear fuel (SNF) casks have been studied in the United States for almost two decades. The issuance of the
U.S. Nuclear Regulatory Commission (NRC) staff guidance for actinide-only burnup credit in 2002 was a
significant step toward providing a regulatory framework for using burnup credit in transport casks. However,
adherence to the current regulatory guidance (e.g., limit credit to actinides) enables only about 30% of the existing
Presentation made at IAEA on the NFST Execution Strategy Analysis Capability
Presentation made at IAEA on the NFST Execution Strategy Analysis Capability
Presentation made at International Conference on The Management of Spent Nuclear Fuel from Nuclear Power Reactors, An Integrated approach to the Back-End of the Fuel Cycle (IAEA-CN-226). The purpose of the conference was to highlight the importance of an integrated long-term approach to the management of spent fuel from nuclear power reactors.
Presentation made at IAEA on Interim Storage Facility Design Concepts
Presentation made at IAEA on Interim Storage Facility Design Concepts
Presentation made at International Conference on The Management of Spent Nuclear Fuel from Nuclear Power Reactors, An Integrated approach to the Back-End of the Fuel Cycle (IAEA-CN-226). The purpose of the conference was to highlight the importance of an integrated long-term approach to the management of spent fuel from nuclear power reactors.
Presentation made at IAEA on Dry Storage System Aging Management
Presentation made at IAEA on Dry Storage System Aging Management
Presentation made at International Conference on The Management of Spent Nuclear Fuel from Nuclear Power Reactors, An Integrated approach to the Back-End of the Fuel Cycle (IAEA-CN-226). The purpose of the conference was to highlight the importance of an integrated long-term approach to the management of spent fuel from nuclear power reactors.
SITING PROCESS FOR HLW REPOSITORY IN JAPAN
SITING PROCESS FOR HLW REPOSITORY IN JAPAN
In the year 2000, the geological disposal program for high-level radioactive waste in Japan moved from the phase of generic research and development (R&D) into the phase of implementation. Following legislation entitled the “Specified Radioactive Waste Final Disposal Act”, the Nuclear Waste Management Organization of Japan (NUMO) was established as the implementing organization.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
This report provides - a detailed description of the Austrian policy and the usual practices concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section B); - a detailed description of the Austrian legal regime concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section E).
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
. On 25 March 1999 the Government of the Czech Republic approved the Joint Convention which came into effect in the Czech Republic on 18 June 2001. In agreement with the obligations resulting from its accession to the Joint Convention the Czech Republic has already drawn the second National Report for the purposes of Review Meetings of the Contracting Parties, which describes the system of spent fuel and radioactive waste management in the scope required by selected articles of the Joint Convention.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, USA National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, USA National Report
The United States of America ratified the “Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management” (Joint Convention) on April 9, 2003. The Joint Convention establishes an international peer review process among Contracting Parties and provides incentives for nations to take appropriate steps to bring their nuclear activities into compliance with general safety standards and practices. This first Review Meeting of the Contracting Parties under the Joint Convention is scheduled to take place in November 2003 in Vienna, Austria.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, 2nd Finnish National Report as referred to in Article 32 of the Convention
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, 2nd Finnish National Report as referred to in Article 32 of the Convention
Finland signed the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management on 2 October 1997 and deposited the tools of acceptance on 10 February 2000. The Convention entered into force on 18 June 2001. The major generators of radioactive waste in Finland are the two nuclear power plants, the Loviisa and Olkiluoto plants. The Loviisa plant has two PWR units, operated by Fortum Power and Heat Oy, and the Olkiluoto plant two BWR units, operated by Teollisuuden Voima Oy.
Second Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Kingdom of Belgium National Report
Second Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Kingdom of Belgium National Report
On 8 December 1997 Belgium has signed the Joint Convention. The Belgian legislator has expressed its consent with the obligations resulting from the Convention via the Law of 2 August 2002. The ratification was obtained on 5 September 2002. The Convention became effective on 4 December 2002, or 90 days after the Ratification Act had been deposited. Belgium belongs to the group of Contracting Parties having at least one operational nuclear generating unit on their territory.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Denmark National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Denmark National Report
Denmark signed the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management 29 September 1997, the day it opened for signature. The Convention was accepted 3 September 1999 by letter from the Foreign Ministry to the International Atomic Energy Agency (IAEA). Until further notice the Convention does not apply for the autonomous territories Greenland and the Faroe Islands, which both do not possess spent nuclear fuel or radioactive waste. The present report is the Danish National Report for the Second Review Meeting to the Convention.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of Japan for the Third Review Meeting
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of Japan for the Third Review Meeting
Nuclear facilities in Japan are as listed in the following table, the details of which are described in Section D.