Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Alternative Means of Financing and Managing the Civilian Radioactive Waste Management Program
Alternative Means of Financing and Managing the Civilian Radioactive Waste Management Program
This report is in response to the directive of the House Appropriations Subcommittee for Energy and Water
Development that the Department of Energy (DOE) update a 1984 report of alternative means of financing and
managing (AMFM) the Office of Civilian Radioactive Waste Management (OCRWM) in the DOE. The
President’s FY 2002 budget also stated: “DOE will submit to Congress an updated report regarding alternative
approaches to finance and manage the program by June 30, 2001[.] DOE will identify in this report models of
Managing Commercial High-Level Radioactive Waste
Managing Commercial High-Level Radioactive Waste
After more than 20 years of commercial nuclear power, the Federal
Government has yet to develop a broadly supported policy for fulfilling
its legal responsibility for the final isolation of high-level radioactive waste.
OTA's study concludes that until such a policy is adopted in law, there
is a substantial risk that the false starts, shifts of policy, and fluctuating support
that have plagued the final isolation program in the past will continue.
Final isolation-the last step in radioactive waste management-is intended
Living in a Chemical World--Framing the Future in Light of the Past
Living in a Chemical World--Framing the Future in Light of the Past
Deciding for the Future: Balancing Risks, Costs, and Benefits Fairly Across Generations--A Report by a Panel of the National Academy of Public Administration for the U.S. Department of Energy
Deciding for the Future: Balancing Risks, Costs, and Benefits Fairly Across Generations--A Report by a Panel of the National Academy of Public Administration for the U.S. Department of Energy
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
The main objective of this report is to identify conditions which affect public concern (either
increase or decrease) and political acceptance for developing and implementing programmes
for geologic disposal of long-lived radioactive waste. It also looks how citizens and relevant
actors can be associated in the decision making process in such a way that their input is
enriching the outcome towards a more socially robust and sustainable solution. Finally, it
aims at learning from the interaction how to optimise risk management addressing needs and
Geological Disposal of Radioactive Waste, Safety Requirements No. WS-R-4
Geological Disposal of Radioactive Waste, Safety Requirements No. WS-R-4
Nuclear Waste: Is There a Need for Federal Interim Storage? Report of the Monitored Retrievable Storage Review Commission
Nuclear Waste: Is There a Need for Federal Interim Storage? Report of the Monitored Retrievable Storage Review Commission
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
Environmental Impact Statement Comments, Management of Commercial High-Level and Transuranium-Contaminated Radioactive Waste
Environmental Impact Statement Comments, Management of Commercial High-Level and Transuranium-Contaminated Radioactive Waste
This report summarizes the results of EPA's review of the AEC
draft environmental statement, "Management of Commercial High-Level
and Transuranium-Contaminated Radioactive Waste" (WASH-1539). The
means by which high-level and long-lived radioactive wastes are
managed constitutes one of the most important questions upon which
the public acceptability of nuclear power, with its social and economic
benefits, will be determined. While the generation of power by
nuclear means offers certain benefits from the environmental viewpoint,
HTC Experimental Program: Validation and Calculational Analysis
HTC Experimental Program: Validation and Calculational Analysis
In the 1980s a series of the Haut Taux de Combustion (HTC) critical experiments with fuel pins in a water-moderated lattice was conducted at the Apparatus B experimental facility in Valduc (Commissariat à l'Energie Atomique, France) with the support of the Institut de Radioprotection et de Sûreté Nucléaire and AREVA NC. Four series of experiments were designed to assess profit associated with actinide-only burnup credit in the criticality safety evaluation for fuel handling, pool storage, and spent-fuel cask conditions.
Validation Issues for Depletion and Criticality Analysis in Burnup Credit
Validation Issues for Depletion and Criticality Analysis in Burnup Credit
This paper reviews validation issues associated with implementation of burnup credit in transport, dry storage,
and disposal. The issues discussed are ones that have been identified by one or more constituents of the
United States technical community (national laboratories, licensees, and regulators) that have been exploring the
use of burnup credit. There is not necessarily agreement on the importance of the various issues, which
sometimes is what creates the issue. The broad issues relate to the paucity of available experimental data
Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0
Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0
In January 1999, the U.S. Department of Energy (DOE)/Office of Civilian Radioactive
Waste Management (OCRWM) submitted the Disposal Criticality Analysis Methodology
Topical Report, Revision 0 (TR) to the U.S. Nuclear Regulatory Commission (NRC) for
review and approval. The TR presents an overall approach for consideration of postclosure
disposal criticality of commercial and defense high-level waste to be placed at
the proposed Yucca Mountain site. During the course of the review and interactions
ANSI/ANS-8.27-2008: Burnup Credit for LWR Fuel
ANSI/ANS-8.27-2008: Burnup Credit for LWR Fuel
This standard provides criteria for accounting for reactivity effects of fuel irradiation and radioactive decay in criticality safety control of storage, transportation, and disposal of commercial LWR UO2 fuel assemblies.
This standard assumes the fuel and any fixed burnable absorbers are contained in an intact assembly. Additional considerations could be necessary for fuel assemblies that have been disassembled, consolidated, damaged, or reconfigured in any manner.
Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask
Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask
The Interim Staff Guidance on burnup credit (ISG-8) for spent fuel in storage and transportation casks, issued by the Nuclear Regulatory Commission’s Spent Fuel Project Office, recommends a burnup measurement for each assembly to confirm the reactor record and compliance with the assembly burnup value used for loading acceptance. This recommendation is intended to prevent unauthorized loading (misloading) of assemblies due to inaccuracies in reactor burnup records and/or improper assembly identification, thereby ensuring that the appropriate subcritical margin is maintained.
Full Burnup Credit in Transport and Storage Casks--Benefits and Implementation
Full Burnup Credit in Transport and Storage Casks--Benefits and Implementation
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Updated Evaluation of Burnup Credit for Accommodating PWR Spent Nuclear Fuel in High-Capacity Cask Designs
Updated Evaluation of Burnup Credit for Accommodating PWR Spent Nuclear Fuel in High-Capacity Cask Designs
Current Status and Potential Benefits of Burnup Credit for Spent Fuel Transportation
Current Status and Potential Benefits of Burnup Credit for Spent Fuel Transportation
PWR Burnup Credit Using Both Belts and Suspenders
PWR Burnup Credit Using Both Belts and Suspenders
Site Evaluation Process
Site Evaluation Process
What Are the Key Lessons Learned from Site Evaluation Processes for the WIPP and Yucca Mountain Sites?
What Are the Key Lessons Learned from Site Evaluation Processes for the WIPP and Yucca Mountain Sites?
Comments by John Greeves, Former Director, Division of Waste Management, NRC, presented to BRC Disposal Subcommittee
Slides - Lessons Learned from US Nuclear Waste Repository Programs
Slides - Lessons Learned from US Nuclear Waste Repository Programs
Presented to the Blue Ribbon Commission on America's Nuclear Future Subcommittee on Disposal
Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites
Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites
This report discusses the status of the commercial spent nuclear fuel (SNF) inventory in the United States, at both decommissioned and operating commercial nuclear power reactor sites; summarizes the contractual arrangement the government and utilities have under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR Part 961) (Standard Contract), related litigation, and the financial liabilities resulting from the Department’s delay in performance under these contracts; provides a history of interim storage policy as it relates to commercial SN
The International Security Implications Of U.S. Domestic Nuclear Power Decisions
The International Security Implications Of U.S. Domestic Nuclear Power Decisions
The United States makes decisions regarding the domestic uses of nuclear energy and the nuclear fuel cycle primarily based economic considerations, domestic political constraints, and environmental impact concerns. Such factors influence U.S. foreign policy decisions as well, but foreign policy decisions are often more strongly determined by national security considerations, including concerns about nuclear weapons proliferation and nuclear terrorism.