slides - Constallation Energy Nuclear Group Fukushima Update
slides - Constallation Energy Nuclear Group Fukushima Update
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss on the reactivity of a waste package containing mixed oxide spent nuclear fuel. Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the waste package are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF.
The purpose of this calculation is to establish the relative change in the effective neutron multiplication factor (keff) due to the use of MCNP unique identifiers (ZAIDs) in Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF (Reference 2.2.1, Attachment 3, MCNP inputs.zip) that are different to the ZAIDs used in the Analysis of Critical Benchmark Experiments and Critical Limit Calculation for DOE SNF (Reference 2.2.5, Table 5-3).
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this calculation file is to document criticality calculations performed on two different rod consolidation waste package designs. The results presented in this calculation file may be used to support further evaluation of the rod consolidation waste package design.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this analysis is to document the Commercial Reactor Critical (CRC) benchmark evaluation performed for the Quad Cities Unit 1 boiling water reactor (BWR). The CRC benchmark is performed at a beginning of life (BOL) statepoint representing reactor start-up critical conditions. The objective of this CRC benchmark analysis is to provide a validation benchmark for the MCNP 4A analytic tool for use in the disposal criticality analysis methodology.
The purpose of this analysis is to document the MCNP evaluations of benchmark lattice Laboratory Critical Experiments (LCE's). The objective of this analysis is to quantify the MCNP 4A (Reference 5.4) code system's ability to accurately calculate the effective neutron multiplication factor (keff) for various measured critical (i.e., keff= 1.0) configurations. This analysis quantifies the effectiveness of the MCNP criticality calculation for lattice configurations containing U02 and Pu02 fissile oxide fuel using two different cross section data libraries.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The objective of this analysis is to evaluate accumulations within the thermally altered tuff surrounding a drift. The evaluation examines accumulation of uranium minerals (soddyite), plutonium oxide (Pu01), and combinations of these materials. A hypothetical model of the tuff is used to provide insight into the factors that affect criticality for this near-field scenario. The factors examined include: the size of the accumulation, the fissile composition of the accumulation, the water or clayey material fraction in the accumulation and the water fraction in the tuff
The Disposal Criticality Analysis Methodology Topical Report (Reference 1) states that the accuracy of the criticality analysis methodology (MCNP Monte Carlo code and cross-section data) designated to assess the potential for criticality of various configurations in the Yucca Mountain proposed repository is established by evaluating appropriately selected benchmark critical experiments.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Slides - WM2014 Symposia, March 2-6, 2014, Phoenix, AZ
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to compare the criticality potential of Westinghouse 17x17 mixed oxide (MOX) PWR fuel with the Design Basis spent nuclear fuel (SNF) analyzed previously (Ref. 5.1, 5.2). The basis of comparison will be the conceptual design Multi- Purpose Canister (MPC) PWR waste package concepts.
This report, Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology, contains a summary of the laboratory critical experiment (LCE) analyses used to support the validation of the disposal criticality analysis methodology.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013