Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.
Westinghouse MOX SNF Isotopic Source
Westinghouse MOX SNF Isotopic Source
The purpose of this calculation is to develop an estimate of the isotopic content as a function of time for mixed oxide (MOX) spent nuclear fuel (SNF) assemblies in a Westinghouse pressurized water reactor (PWR). These data will be used as source data for criticality, thermal, and radiation shielding evaluations of waste package (WP) designs for MOX assemblies in the Monitored Geologic Repository (MGR).
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository
As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.
Cross-Checking of the Operator Data Used for Burn Up Measurements
Cross-Checking of the Operator Data Used for Burn Up Measurements
Taking into account of the loss of reactivity of fuels at the end of their irradiation is known under the
term burnup credit (BUC). It is a question of dimensioning in a less penalizing way the devices of transport,
storage or of processing with respect to the risk of criticality. In the context of nuclear criticality safety a better
realism cannot be obtained at the price of conservatism. As a result the regulator requires measurements make it
possible to validate the adequacy between real fuels and the design assumptions. The sophistication of the
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
This report describes the actions taken in Argentina on the safety of spent fuel management
(SF) and on the safety of radioactive waste management, in order to provide evidence of the
fulfillment of its obligations under the Joint Convention. To facilitate the reading and a better
understanding of this report a summary of those parts of the 1st Report that were considered
necessary have been included.
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT THIRD NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT THIRD NATIONAL REPORT
The present National Report describes the actions taken in Argentina on the safety of spent fuel
(SF) management and on the safety of radioactive waste (RW) management, in order to provide
evidence of the fulfilment of the obligations derived from the Joint Convention. To facilitate the
reading and a better understanding, it has been decided to include a summary of those parts of
the two prior National Reports that are considered necessary in order to comply with this
objective.
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together Synthesis of the FSC National Workshop and Community Visit Bar-le-Duc, France
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together Synthesis of the FSC National Workshop and Community Visit Bar-le-Duc, France
The 7th Forum on Stakeholder Confidence (FSC) National Workshop and Community Visit was held on 7-9 April 2009 in Bar-le-Duc, France. It was organized with teh assistance of the CLIS (the Local Information and Oversight Committee) and the financial and logistical support of Andra, France's National Agency for the Management of Radioactive Waste.
Helping a Community Control its Future: Potential Negotiating Packages and Benefits for an MRS Host
Helping a Community Control its Future: Potential Negotiating Packages and Benefits for an MRS Host
The voluntary siting process for the Monitored Retrievable Storage (MRS) facility set forth in the Nuclear Waste Policy Amendments Act (NWPAA) of 1987 provides a potential host community a unique opportunity to improve its present situation and to gain greater control over its future.
Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Multi-Recycling in Fast Reactors
Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Multi-Recycling in Fast Reactors
This report presents results from a parametric study of equilibrium fuel cycle costs for a closed fuel cycle with multi-recycling of plutonium in fast reactors (FRs) compared to an open, once-through fuel cycle using PWRs. The study examines the impact on fuel cycle costs from changes in the unit costs of uranium, advanced PUREX reprocessing of discharged uranium dioxide (UO2) fuel and fast-reactor mixed-oxide (FR-MOX) fuel, and FR-MOX fuel fabrication.
Program on Technology Innovation: Readiness of Existing and New U.S. Reactors for Mixed-Oxide (MOX) Fuel
Program on Technology Innovation: Readiness of Existing and New U.S. Reactors for Mixed-Oxide (MOX) Fuel
Expanding interest in nuclear power and advanced fuel cycles indicate that use of mixed-oxide (MOX) fuel in the current and new U.S. reactor fleet could become an option for utilities in the coming decades. In light of this renewed interest, EPRI has reviewed the substantial knowledge base on MOX fuel irradiation in light water reactors (LWRs). The goal was to evaluate the technical feasibility of MOX fuel use in the U.S. reactor fleet for both existing and advanced LWR designs (Generation III/III+).
Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Single-Recycling in Pressurized Water Reactors
Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Single-Recycling in Pressurized Water Reactors
Within the context of long-term waste management and sustainable nuclear fuel supply, there continue to be discussions regarding whether the United States should consider recycling of light-water reactor (LWR) spent nuclear fuel (SNF) for the current fleet of U.S. LWRs. This report presents a parametric study of equilibrium fuel cycle costs for an open fuel cycle without plutonium recycling (once-through) and with plutonium recycling (single-recycling using mixed-oxide, or MOX, fuel), assuming an all-pressurized water reactor (PWR) fleet.
Report on intact and Degraded Criticality for Selected Plutonium Waste Forms in a. Geologic Repository, Volume I: MOX SNF
Report on intact and Degraded Criticality for Selected Plutonium Waste Forms in a. Geologic Repository, Volume I: MOX SNF
As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss (Me203) on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/ burnup pairs expected for the MOX SNF.
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss on the reactivity of a waste package containing mixed oxide spent nuclear fuel. Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the waste package are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF.
What We've Heard - A Staff Summary of Major Themes in Testimony and Comments Received by the Blue Ribbon Commission on America’s Nuclear Future to Date
What We've Heard - A Staff Summary of Major Themes in Testimony and Comments Received by the Blue Ribbon Commission on America’s Nuclear Future to Date
The Commission is charged with submitting a
draft report to the Secretary of Energy before
the end of July 2011. To aid the Commissioners
in fulfilling that responsibility, the Commission
staff has prepared this report to summarize what
the Commission has heard up to this point in
the process. It does not attempt to recount every
comment or opinion submitted to the Commission
thus far; rather, the aim here is to summarize
major themes from the extensive testimony and
public comment the Commission has received to
Criticality Evaluation of Intact and Degraded PWR WPs Containing MOX SNF
Criticality Evaluation of Intact and Degraded PWR WPs Containing MOX SNF
The purpose of this calculation is to perform criticality evaluations for mixed oxide spent nuclear fuel (MOX SNF) in 12 and 21 Pressurized Water Reactor (PWR) waste packages (WPs) for both intact and degraded configurations.
The MOX assembly design considered in previous studies on Pu disposition in commercial reactors is based on the Westinghouse (W) 17x17 Vantage 5 assembly (Ref. 7.2). Depletion analyses of four Pu enrichment and burnup (expressed as gigawatt days/metric ton heavy metal; GWd/MTHM) combinations were performed in Reference 7.4. These are:
Criticality Calculation for the Most Reactive Degraded Configurations of the FFTF SNF Codisposal WP Containing an Intact Ident-69 Container
Criticality Calculation for the Most Reactive Degraded Configurations of the FFTF SNF Codisposal WP Containing an Intact Ident-69 Container
The objective of this calculation is to perform additional degraded mode criticality evaluations of the Department of Energy's (DOE) Fast Flux Test Facility (FFTF) Spent Nuclear Fuel (SNF) codisposed in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP). The scope of this calculation is limited to the most reactive degraded configurations of the codisposal WP with an almost intact Ident-69 container (breached and flooded but otherwise non-degraded) containing intact FFTF SNF pins.
Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package
Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package
The purpose of this calculation is to evaluate the transient behavior and consequences of a worst- case criticality event involving intact pressurized water reactor (PWR) mixed-oxide (MOX) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR waste package (WP). This calculation will provide information necessary for demonstrating that the consequences of a worst-case criticality event involving intact PWR MOX SNF are insignificant in their effect on the overall radioisotopic inventory and on the integrity of the repository.
Nuclear Waste Facility Siting and Local Opposition
Nuclear Waste Facility Siting and Local Opposition
On the historic evidence, but also for the distinctive qualities of the challenge, nuclear waste siting conflicts are assuredly among the most refractory in the large variety of NIMBY (Not In My Back Yard) facility siting disputes. Since the president brought the Yucca Mountain process to a halt in 2010 (or, more accurately, issued its death certificate), the search for a permanent waste fuel repository is at the starting line again.
Westinghouse 17x17 MOX PWR Assembly- Waste Package Criticality Analysis (SCPB: N/A)
Westinghouse 17x17 MOX PWR Assembly- Waste Package Criticality Analysis (SCPB: N/A)
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to compare the criticality potential of Westinghouse 17x17 mixed oxide (MOX) PWR fuel with the Design Basis spent nuclear fuel (SNF) analyzed previously (Ref. 5.1, 5.2). The basis of comparison will be the conceptual design Multi- Purpose Canister (MPC) PWR waste package concepts.
Evaluation of Codisposal Viability for MOX (FFTF) DOE-Owned Fuel
Evaluation of Codisposal Viability for MOX (FFTF) DOE-Owned Fuel
There are more than 250 forms of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. Fast Flux Test Facility (FFTF) fuel has been designated as the representative fuel for the mixed-oxide (MOX) fuel group which is a mixture of uranium and plutonium oxides.
Helping a Community Control its Future: Potential Negotiating Packages and Benefits for an MRS Host
Helping a Community Control its Future: Potential Negotiating Packages and Benefits for an MRS Host
The voluntary siting process for the Monitored Retrievable Storage (MRS) facility set forth in the Nuclear Waste Policy Amendments Act (NWPAA) of 1987 provides a potential host community a unique opportunity to improve its present situation and to gain greater control over its future.
Plutonium Fuel: An Assessment Report by an Expert Group
Plutonium Fuel: An Assessment Report by an Expert Group
Ever since the 1950s, plutonium, used in fas reactors, has been seen as the key to unlocking the vast energy resource contained in the the world's uranium reserves. However, the reductions in expected nuclear reactor installation rates, combined with discovery of additional uranium, have led to a lengthening in the perceived time interval before fast reactors, the most effective users of plutonium, will make large demands on plutonium supplies. THere are several options concerning its use or storage in the meantime.