Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
OECD/NEA Burnup Credit Criticality Benchmark, Analysis of Phase II-B Results: Conceptual PWR Spent Fuel Transportation Cask
OECD/NEA Burnup Credit Criticality Benchmark, Analysis of Phase II-B Results: Conceptual PWR Spent Fuel Transportation Cask
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
The "Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology" contains a summary of the analyses that compare SNF measured isotopic concentrations (radiochemical assays) to calculated SNF isotop~c concentrations (SAS2H module ·orScale4.3). The results of these analyses are used to support the validation of the isotopic models for spent commercial light water reactor (LWR) fuel.
Summary Report of Commercial Reactor Criticality Data for Quad Cities Unit 2
Summary Report of Commercial Reactor Criticality Data for Quad Cities Unit 2
The Potential of Using Commercial Duel Purpose Canisters for Direct Disposal
The Potential of Using Commercial Duel Purpose Canisters for Direct Disposal
This report evaluates the potential for directly disposing of licensed commercial Dual Purpose
Canisters (DPCs) inside waste package overpacks without reopening. The evaluation considers
the principal features of the DPC designs that have been licensed by the Nuclear Regulatory
Commission (NRC) as these relate to the current designs of waste packages and as they relate to
disposability in the repository. Where DPC features appear to compromise future disposability,
those changes that would improve prospective disposability are identified.
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
THE ROLE OF INDIAN TRIBES IN AMERICA’S NUCLEAR FUTURE
THE ROLE OF INDIAN TRIBES IN AMERICA’S NUCLEAR FUTURE
Indian tribes have voiced their tribal issues in the United States‘ nuclear effort since its
inception, with the siting of what would become Los Alamos National Laboratory adjacent to the
San Ildefonso Pueblo Reservation and the Hanford plutonium production works along waterways
shared with the Yakama Nation and other Indian tribes. The siting of a proposed repository at
Yucca Mountain, Nevada along with other activities conducted on the Nevada National Security
Site (NNSS) (formerly the Nevada Test Site), increased the need for the United States
Extended Storage and Transportation - Evaluation of Drying Adequacy
Extended Storage and Transportation - Evaluation of Drying Adequacy
The U.S. Nuclear Regulatory Commission (NRC) is evaluating the safety and security of spent nuclear fuel (SNF) stored in dry casks for extended time periods before transportation to a location where the SNF is further processed or permanently disposed.
Deciding for the Future: Balancing Risks, Costs, and Benefits, Fairly Across Generations
Deciding for the Future: Balancing Risks, Costs, and Benefits, Fairly Across Generations
The key challenge of this National Academy of Public Administration project is captured in the subtitle of this report, Balancing Risks, Costs, and Benefits Fairly Across Generations.
Blue Ribbon Commission on America’s Nuclear Future Report to the Secretary of Energy
Blue Ribbon Commission on America’s Nuclear Future Report to the Secretary of Energy
This report highlights the findings and conclusions of the Blue Ribbon Commission on America’s Nuclear Future (BRC) and presents recommendations for consideration by the Administration and Congress, as well as interested state, tribal and local governments, other stakeholders, and the public.
Disposal Criticality Analysis Methodology Topical Report Revision 2
Disposal Criticality Analysis Methodology Topical Report Revision 2
This topical report describes the approach to the risk-informed, performance-based methodology to be used for performing postclosure criticality analyses for waste forms in the Monitored Geologic Repository at Yucca Mountain, Nevada. The risk-informed, performance-based methodology will be used during the licensing process to demonstrate how the potential for postclosure criticality will be limited and to demonstrate that public health and safety are protected against postclosure criticality.
The Potential of Using Commercial Dual Purpose Canisters for Direct Disposal
The Potential of Using Commercial Dual Purpose Canisters for Direct Disposal
This report evaluates the potential for directly disposing of licensed commercial Dual Purpose
Canisters (DPCs) inside waste package overpacks without reopening. The evaluation considers
the principal features of the DPC designs that have been licensed by the Nuclear Regulatory
Commission (NRC) as these relate to thedesigns of waste packages and as they relate to
disposability in a repository in unsaturated volcanic tuff. Where DPC features appear to compromise future disposability in an unsaturated tuff (e.g., Yucca Mountain) repository