Category of Content
Siting Experience Documents Only
Publication Date
Keywords
CRC Reactivity Calculations for McGuire Unit 1
CRC Reactivity Calculations for McGuire Unit 1
The purpose of this calculation is to document the McGuire Unit 1 pressurized water reactor (PWR) reactivity calculations performed as part of the commercial reactor critical (CRC) evaluation program. CRC evaluation reactivity calculations are performed at a number of statepoints, representing reactor start-up critical conditions at either beginning of life (BOL), beginning of cycle (BOC), or mid-cycle when the reactor resumed operation after a shutdown.
Westinghouse MOX SNF Isotopic Source
Westinghouse MOX SNF Isotopic Source
The purpose of this calculation is to develop an estimate of the isotopic content as a function of time for mixed oxide (MOX) spent nuclear fuel (SNF) assemblies in a Westinghouse pressurized water reactor (PWR). These data will be used as source data for criticality, thermal, and radiation shielding evaluations of waste package (WP) designs for MOX assemblies in the Monitored Geologic Repository (MGR).
CRC Depletion Calculations for Crystal River Unit 3
CRC Depletion Calculations for Crystal River Unit 3
The purpose of this calculation is to document the Crystal River Unit 3 pressurized water reactor (PWR) fuel depletion calculations performed as part of the commercial reactor critical (CRC) evaluation program. The CRC evaluations support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository.
CRC Depletion Calculations for McGuire Unit 1
CRC Depletion Calculations for McGuire Unit 1
The purpose of this calculation is to document the McGuire Unit 1 pressurized water reactor (PWR) fuel depletion calculations performed as part of the commercial reactor critical (CRC) evaluation program. The CRC evaluations support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository.
Axial Burnup Profile Database for Pressurized Water Reactors
Axial Burnup Profile Database for Pressurized Water Reactors
The data were obtained directly from utilities whose reactors represent the range of commercial PWR fuel lattices. The work was performed by Yankee Atomic Electric for Sandia National Laboratory. All axial burnup profiles were calculated from 3-D depletion analyses of the core configuration. The organizations and utilities providing axial burnup profiles for the database used different model codes for the 3D-depletion calculations. The model codes used were: SIMULATE-3, NEMO, ANC, and PRESTO-II. Cross-section inputs describing the assemblies are derived from assembly lattice calculations.
SAS2H Analysis of Radiochemical Assay Samples from Yankee Rowe PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Yankee Rowe PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Trino Vercelles PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Trino Vercelles PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
Code to Code Comparison of One- and Two-Dimensional Methods
Code to Code Comparison of One- and Two-Dimensional Methods
This calculation file provides comparisons of one- and two-dimensional methods for calculating the isotopic content of spent nuclear fuel. The one-dimensional methods use the SAS2H sequence of SCALE 4.4a (Reference 7.1) and the SAS2 sequence of SCALE 5.0 (Reference 7.2). The two-dimensional method uses the TRITON control module along with the T-DEPL sequence of SCALE 5.0 (Reference 7.3). The SAS2H results for SCALE 4.4a are taken from Reference 7.4. Data from previous two-dimensional calculations (Reference 7.5) using CASM03 will also be used for comparisons with TRITON.
CRC Reactivity Calculations for Three Mile Island Unit 1
CRC Reactivity Calculations for Three Mile Island Unit 1
The purpose of this calculation is to document the Three Mile Island Unit 1 pressurized water reactor {PWR) reactivity calculations performed as part o f the commercial reactor critical (CRC) evaluation program. CRC evaluation reactivity calculations are performed at a number of statepoints, representing reactor start-up critical conditions at either beginning of life (BOL), beginning of cycle (BOC), or mid- cycle when the reactor resumed operation after a shutdown.
Sequoyah Unit 2 CRC Depletion Calculations
Sequoyah Unit 2 CRC Depletion Calculations
The purpose of this calculation is to document the Sequoyah Unit 2 pressurized water reactor (PWR) fuel depletion calculations performed as part of the commercial reactor critical (CRC) evaluation program. The CRC evaluations support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository.
Dry Transfer Facility Criticality Safety Calculations
Dry Transfer Facility Criticality Safety Calculations
This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the Project Design Criteria (PDC) Document (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in Project Requirements Document (Canori and Leitner 2003 [DIRS 166275], p.
SAS2H Analysis of Radiochemical Assay Samples from Calvert Cliffs PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Calvert Cliffs PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
CRC Reactivity Calculations for Crystal River Unit 3
CRC Reactivity Calculations for Crystal River Unit 3
The purpose of this calculation is to document the Crystal River Unit 3 pressurized waste reactor (PWR) reactivity calculations performed as part of the commercial reactor critical (CRC) evaluation program. CRC evaluation reactivity calculations are performed at a number of statepoints, representing reactor start-up critical conditions at either beginning of life (BOL), beginning of cycle (BOC), or mid-cycle when the reactor resumed operation after a shutdown.
SAS2H Analysis of Radiochemical Assay Samples from Obrigheim PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Obrigheim PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
Reactor Record Uncertainty Determination
Reactor Record Uncertainty Determination
The objective of this calculation is to evaluate commercial spent nuclear fuel (CSNF) bumup uncertainty based on pressurized water reactor (PWR) and boiling water reactor (BWR) records kept by each utility. The bumup uncertainties will be used to adjust either the waste package loading curves or the bumup values of assemblies shipped to the repository.
This engineering calculation supports the burnup credit methodology in Reference 1 and is performed in accordance with the AREVAIFANP procedures in References 2 and 3.
CRC Depletion Calculations for Three Mile Island Unit 1
CRC Depletion Calculations for Three Mile Island Unit 1
The purpose of this calculation is to document the Three Mile Island Unit 1 pressurized water reactor (PWR) fuel depletion calculations performed as part of the commercial reactor critical (CRC) evaluation program. The CRC evaluations support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository.
Principle Isotope Burnup Credit Loading Curve for the 21 PWR Waste Package
Principle Isotope Burnup Credit Loading Curve for the 21 PWR Waste Package
The purpose of this calculation is to determine the required minimum burnup as a function of initial pressurized water reactor (PWR) assembly enrichment that would permit loading of fuel into the 21 PWR waste package (WP), as provided for in QAP-2-0 Activity Evaluation, Perform Criticality, Thermal, Structural, & Shielding Analyses (Reference 7.1).
SAS2H Analysis of Radiochemical Assay Sam les from H.B. Robinson PWR Reactor
SAS2H Analysis of Radiochemical Assay Sam les from H.B. Robinson PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Generated Isotopic Concentrations for B&W 15xl5 PWR Assembly (SCPB: N/A)
SAS2H Generated Isotopic Concentrations for B&W 15xl5 PWR Assembly (SCPB: N/A)
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations.
SAS2H Analysis of Radiochemical Assay Samples from Mihama PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Mihama PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
SAS2H Analysis of Radiochemical Assay Samples from Turkey Point PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Turkey Point PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied·to future depletion calculations using SAS2H in which no measurements are available. ·
Range of Neutronic Parameters Calculation File
Range of Neutronic Parameters Calculation File
The purpose of this engineering calculation is to document the benchmark range, over a variety of parameters, for the validation of the criticality calculations supporting the Monitored Geologic Repository (MGR). This engineering calculation accomplishes this by characterizing the Laboratory Critical Experiments (LCE) and the Pressurized Water Reactor (PWR) Commercial Reactor Criticals (CRC), and summarizing the significant parameters. This engineering calculation supports the Disposal Criticality Analysis Methodology program.
Criticality Evaluation of Intact and Degraded PWR WPs Containing MOX SNF
Criticality Evaluation of Intact and Degraded PWR WPs Containing MOX SNF
The purpose of this calculation is to perform criticality evaluations for mixed oxide spent nuclear fuel in 12 and 21 pressurized water reactor waste packages for both intact and degraded configurations. The MOX assembly design considered in previous studies on Pu disposition in commercial reactors is based on the Westinghouse 17x17 Vantage 5 assembly (Ref. 7.2). Depletion analyses of four Pu enrichment and burnup(expressed as gigawatt days/metric ton heavy metal; GWd/MTHM)) combinations were performed in Ref. 7.4.
Probability of a PWR Uncanistered Fuel Waste Package Postclosure Criticality
Probability of a PWR Uncanistered Fuel Waste Package Postclosure Criticality
The purpose of this calculation is to estimate the probability of criticality in a pressurized water reactor (PWR) uncanistered fuel waste package during the postclosure phase of the repository as a function of various waste package material, loading, and environmental parameters. Parameterization on the upper subcritical limit that is used to define the threshold for criticality will also be performed. The possibility of waste package misload due to human or equipment error during preclosure is also considered in estimating the postclosure criticality probability.