Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
Taking credit for the reduced reactivity of spent nuclear fuel in criticality analyses is referred to
as burnup credit. Criticality safety evaluations employing burnup credit require validation of the
depletion and criticality calculation methods and computer codes with available measurement
data. To address the issues of burnup credit criticality validation, the U.S. Nuclear Regulatory
Commission initiated a project with Oak Ridge National Laboratory to (1) develop and establish
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
This report describes the actions taken in Argentina on the safety of spent fuel management
(SF) and on the safety of radioactive waste management, in order to provide evidence of the
fulfillment of its obligations under the Joint Convention. To facilitate the reading and a better
understanding of this report a summary of those parts of the 1st Report that were considered
necessary have been included.
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT THIRD NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT THIRD NATIONAL REPORT
The present National Report describes the actions taken in Argentina on the safety of spent fuel
(SF) management and on the safety of radioactive waste (RW) management, in order to provide
evidence of the fulfilment of the obligations derived from the Joint Convention. To facilitate the
reading and a better understanding, it has been decided to include a summary of those parts of
the two prior National Reports that are considered necessary in order to comply with this
objective.
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
Environmental Permitting Guidance Radioactive Substances Regulation For the Environmental Permitting (England and Wales) Regulations 2010

Environmental Permitting Guidance Radioactive Substances Regulation For the Environmental Permitting (England and Wales) Regulations 2010
This guidance is aimed at helping readers understand the permitting and other requirements specific to Radioactive Substances Regulation (RSR). The RSR regime covers
- more than one European Directive, parts of which are also implemented by other regulatory regimes which, to an extent, complement RSR;
- various Government policies and strategies; and
Storage of Spent Nuclear Fuel (Specific Safety Guide)
Storage of Spent Nuclear Fuel (Specific Safety Guide)
This Safety Guide provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facilities and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods that have become necessary owing to delays in the development of disposal facilities and the decrease in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup.
Report to Congress on Abnormal Occurrences (NUREG-0090)
Report to Congress on Abnormal Occurrences (NUREG-0090)
Section 208 of the Energy Reorganization Act of 1974, as amended (Public Law 93-438), defines an "abnormal occurrence" (AO) as an unscheduled incident or event that the U.S. Nuclear Regulatory Commission (NRC) determines to be significant from the standpoint of public health or safety. The Federal Reports Elimination and Sunset Act of 1995 (Public Law 104-66) requires that the NRC report AOs to Congress annually.
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Spent fuel transportation and storage cask designs based on a burnup credit approach must
consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For
example, the spent fuel composition must be adequately characterized and the criticality analysis
model can be complicated by the need to consider axial burnup variations. Parametric analyses are
needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel
Preclosure Consequence Analyses
Preclosure Consequence Analyses
The purpose of this calculation is to demonstrate that the preclosure performance objectives specified in 10 CFR 63.111(a) and 10 CFR 63.111(b) (Reference 2.2.1) have been met for the proposed design and operations in the geologic repository operations area (GROA) during normal operations and Category 1 event sequences, and following Category 2 event sequences. Category 1 event sequences are those natural and human-induced event sequences that are expected to occur one or more times before permanent closure of the repository.
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
Overview of the Section 180(c) Program: History, Lessons Learned, and Potential Next Steps
Overview of the Section 180(c) Program: History, Lessons Learned, and Potential Next Steps
The U.S. Department of Energy’s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible, under the Nuclear Waste Policy Act of 1982, for the transportation of spent nuclear fuel and high-level radioactive waste from point of origin to destination at a federal storage or disposal facility. Section 180(c), written into the Nuclear Waste Policy Act Amendments of 1987, requires OCRWM to prepare public safety officials along the routes for these shipments.
Geological Disposal of Radioactive Waste
Geological Disposal of Radioactive Waste
The objective of this safety requirements publication is to set down the protection objectives and criteria for geological disposal and to establish the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management.
Going the Distance? The Safe Transport of Spent Nuclear Fuel and High-Level Radioactive Waste in the United States - Summary
Going the Distance? The Safe Transport of Spent Nuclear Fuel and High-Level Radioactive Waste in the United States - Summary
This new report from the National Research Council’s Nuclear and Radiation Studies Board (NRSB) and the Transportation Research Board reviews the risks and technical and societal concerns for the transport of spent nuclear fuel and high-level radioactive waste in the United States. Shipments are expected to increase as the U.S. Department of Energy opens a repository for spent fuel and high-level waste at Yucca Mountain, and the commercial nuclear industry considers constructing a facility in Utah for temporary storage of spent fuel from some of its nuclear waste plants.
ANS Position Statement: The Safety of Transporting Radioactive Materials
ANS Position Statement: The Safety of Transporting Radioactive Materials
More than 45 million shipments of radioactive materials have taken place in the United States
over the last three decades, with a current rate of about three million per year. The majority of
these radioactive shipments consist of radiopharmaceuticals, luminous dials and indicators,
smoke detectors, contaminated clothing and equipment, and research and industrial sources.
Fewer than 3,500, or 0.01%, have been involved in any sort of accident, incident, or anything
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
This report provides - a detailed description of the Austrian policy and the usual practices concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section B); - a detailed description of the Austrian legal regime concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section E).
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
. On 25 March 1999 the Government of the Czech Republic approved the Joint Convention which came into effect in the Czech Republic on 18 June 2001. In agreement with the obligations resulting from its accession to the Joint Convention the Czech Republic has already drawn the second National Report for the purposes of Review Meetings of the Contracting Parties, which describes the system of spent fuel and radioactive waste management in the scope required by selected articles of the Joint Convention.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, USA National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, USA National Report
The United States of America ratified the “Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management” (Joint Convention) on April 9, 2003. The Joint Convention establishes an international peer review process among Contracting Parties and provides incentives for nations to take appropriate steps to bring their nuclear activities into compliance with general safety standards and practices. This first Review Meeting of the Contracting Parties under the Joint Convention is scheduled to take place in November 2003 in Vienna, Austria.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, 2nd Finnish National Report as referred to in Article 32 of the Convention
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, 2nd Finnish National Report as referred to in Article 32 of the Convention
Finland signed the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management on 2 October 1997 and deposited the tools of acceptance on 10 February 2000. The Convention entered into force on 18 June 2001. The major generators of radioactive waste in Finland are the two nuclear power plants, the Loviisa and Olkiluoto plants. The Loviisa plant has two PWR units, operated by Fortum Power and Heat Oy, and the Olkiluoto plant two BWR units, operated by Teollisuuden Voima Oy.
Second Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Kingdom of Belgium National Report
Second Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Kingdom of Belgium National Report
On 8 December 1997 Belgium has signed the Joint Convention. The Belgian legislator has expressed its consent with the obligations resulting from the Convention via the Law of 2 August 2002. The ratification was obtained on 5 September 2002. The Convention became effective on 4 December 2002, or 90 days after the Ratification Act had been deposited. Belgium belongs to the group of Contracting Parties having at least one operational nuclear generating unit on their territory.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Denmark National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Denmark National Report
Denmark signed the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management 29 September 1997, the day it opened for signature. The Convention was accepted 3 September 1999 by letter from the Foreign Ministry to the International Atomic Energy Agency (IAEA). Until further notice the Convention does not apply for the autonomous territories Greenland and the Faroe Islands, which both do not possess spent nuclear fuel or radioactive waste. The present report is the Danish National Report for the Second Review Meeting to the Convention.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of Japan for the Third Review Meeting
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of Japan for the Third Review Meeting
Nuclear facilities in Japan are as listed in the following table, the details of which are described in Section D.