Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
Taking credit for the reduced reactivity of spent nuclear fuel in criticality analyses is referred to
as burnup credit. Criticality safety evaluations employing burnup credit require validation of the
depletion and criticality calculation methods and computer codes with available measurement
data. To address the issues of burnup credit criticality validation, the U.S. Nuclear Regulatory
Commission initiated a project with Oak Ridge National Laboratory to (1) develop and establish
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Spent fuel transportation and storage cask designs based on a burnup credit approach must
consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For
example, the spent fuel composition must be adequately characterized and the criticality analysis
model can be complicated by the need to consider axial burnup variations. Parametric analyses are
needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
. On 25 March 1999 the Government of the Czech Republic approved the Joint Convention which came into effect in the Czech Republic on 18 June 2001. In agreement with the obligations resulting from its accession to the Joint Convention the Czech Republic has already drawn the second National Report for the purposes of Review Meetings of the Contracting Parties, which describes the system of spent fuel and radioactive waste management in the scope required by selected articles of the Joint Convention.
Czech Republic National Report under the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management
Czech Republic National Report under the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management
On 25 March 1999 the government of the Czech Republic approved the Joint Convention which came into effect in the Czech Republic on 18 June 2001. In agreement with the obligations resulting from its accession to the Joint Convention the Czech Republic has drawn already the fourth National Report for the purposes of review meetings of the contracting parties, which describes the system of spent fuel and radioactive waste management in the scope required by selected articles of the Joint Convention.
Questions and Answers to the National Report of the Czech Republic
Questions and Answers to the National Report of the Czech Republic
Questions and Answers to the National Report of the Czech Republic
Questions and Answers to the National Report of the Czech Republic
Questions and Answers to the National Report of the Czech Republic
Questions and Answers to the National Report of the Czech Republic
Radioactive Waste Management and Decommissioning in Czech Republic
Radioactive Waste Management and Decommissioning in Czech Republic
OECD/NEA: Czech Republic
OECD/NEA: Czech Republic
Identifying remaining socio-technical challenges at the national level: Czech Republic
Identifying remaining socio-technical challenges at the national level: Czech Republic
This report describes the history, recent developments and the current situation of the management of highly radioactive waste and spent nuclear fuel in the Czech Republic, with a particular focus on the development of geological disposal for this kind of waste. Special attention is given to the interplay of social and technical aspects of the process. The first chapter gives an overview of the state of affairs and sketches out the trajectories leading to it.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report
This report is the National Report submitted by the Czech Republic for the purposes of assessment meeting of the parties to the Joint Convention. Its objective is to describe the fulfillment status of obligations under the Joint Convention in the Czech Republic as on 31 December 2002. The outline of the National Report is based on recommendations approved at the preparatory meeting of the parties to the Joint Convention in December 2001 and contained in the „Guidelines regarding the form and structure of national reports (JC-SFRW/PREP/FINAL/DOCUMENT 3)“ of 13 December 2001.