Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor
Isotopic Analysis of High-Burnup PWR Spent Fuel Samples from the Takahama-3 Reactor
This report presents the results of computer code benchmark simulations against spent fuel radiochemical assay
measurements from the Kansai Electric Ltd. Takahama-3 reactor published by the Japan Atomic Energy
Research Institute. Takahama-3 is a pressurized-water reactor that operates with a 17 × 17 fuel-assembly design.
Spent fuel samples were obtained from assemblies operated for 2 and 3 cycles and achieved a maximum burnup
of 47 GWd/MTU. Radiochemical analyses were performed on two rods having an initial enrichment of
Background Paper on Commingling of Defense and Commercial Waste
Background Paper on Commingling of Defense and Commercial Waste
Since a 1985 decision by President Reagan that a separate permanent repository for disposal of
defense high level waste was not required1, DOE has planned for disposal of all high-level waste
and spent fuel from national defense activities and DOE’s own research activities in a repository
for commercial waste developed under the Nuclear Waste Policy Act (NWPA). The Commission
has heard recommendations from some commenters2 that this decision be revisited, or even
DOE SNF Phase I and II Summary Report
DOE SNF Phase I and II Summary Report
There are more than 250 forms of U.S. Department of Energy (DOE)owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. For each fuel group, a fuel type that represents the characteristics of all fuels in that group has been selected for detailed analysis.
Improved Radiochemical Assay Analyses Using TRITON Depletion Sequences in SCALE
Improved Radiochemical Assay Analyses Using TRITON Depletion Sequences in SCALE
History, Structure and Institutional Overview of the Nuclear Waste Policy Act of 1982
History, Structure and Institutional Overview of the Nuclear Waste Policy Act of 1982
The Nuclear Waste Policy Act of 1982 (NWPA) established a program to deal comprehensively with the waste byproducts of nuclear power generation, as well as defense-related radioactive wastes, if appropriate. Under this program, the federal Department of Energy (DOE) must locate and develop a site for disposal of high-level radioactive wastes in a geologic setting capable of isolating them from adverse public and environmental exposure for at least 10,000 and up to 100,000 years.
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Pressurized water reactor (PWR) burnup credit validation is
demonstrated using the benchmarks for quantifying fuel reactivity
decrements, published as Benchmarks for Quantifying Fuel Reactivity
Depletion Uncertainty, Electric Power Research Institute (EPRI)
report 1022909. This demonstration uses the depletion module
TRITON (Transport Rigor Implemented with Time-Dependent
Operation for Neutronic Depletion) available in the SCALE 6.1
(Standardized Computer Analyses for Licensing Evaluations) code
Burnup Credit — Contribution to the Analysis of the Yankee Rowe Radiochemical Assays
Burnup Credit — Contribution to the Analysis of the Yankee Rowe Radiochemical Assays
This report presents a methodology for validation of the isotopic
contents of spent light water reactor fuel for actinide-only burnup
credit with additional high-quality radiochemistry assay (RCA) data
obtained from the Yankee Rowe pressurized water reactor. The
additional Yankee Rowe RCA data were not included in previous
isotopic validation studies for burnup credit due to the difficulty of
accurately modeling the complex Yankee Rowe fuel assembly design
using the SAS2H one-dimensional sequence of the earlier SCALE
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Review of Results for the OECD/NEA Phase VII Benchmark: Study of Spent Fuel Compositions for Long-Term Disposal
Review of Results for the OECD/NEA Phase VII Benchmark: Study of Spent Fuel Compositions for Long-Term Disposal
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--Calvert Cliffs, Takahama, and Three Mile Island Reactors
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--Calvert Cliffs, Takahama, and Three Mile Island Reactors
This report is part of a report series designed to document benchmark-quality radiochemical isotopic
assay data against which computer code accuracy can be quantified to establish the uncertainty and bias
associated with the code predictions. The experimental data included in the report series were acquired
from domestic and international programs and include spent fuel samples that cover a large burnup range.
The measurements analyzed in the current report, for which experimental data is publicly available,
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package
Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package
The objective of this analysis is to characterize a codisposal canister containing MIT or ORR fuel in the Five-Pack defense high level waste (DHLW) waste package (WP) to demonstrate concept viability related to use in the Mined Geologic Disposal System (MGDS) environment for the postclosure time frame. The purpose of this analysis is to investigate the disposal criticality and shielding issues for the DHLW WP and establish DHLW WP and codisposal canister compatibility with the MGDS, and to provide criticality and shielding evaluations for the preliminary DHLW WP design.
Letter - Request Approval to Establish and Populate the Ad Hoc Subcommittee on Co‐mingling of Defense and Commercial Wastes
Letter - Request Approval to Establish and Populate the Ad Hoc Subcommittee on Co‐mingling of Defense and Commercial Wastes
Dear Tim:
As we work to complete our final recommendations to the Secretary by January 29, 2012,
we have determined that our efforts would be aided by the formation of an ad hoc
subcommittee to investigate the issue of co‐mingling of defense and commercial wastes.
Specifically, the ad hoc subcommittee would review and make a recommendation to the
Commission on the issue of whether the 1985 Presidential decision to co‐mingle defense
and commercial wastes for disposal should be revisited in light of changes that have
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
Co-Mingled and Defense-Only Repositories
Co-Mingled and Defense-Only Repositories
At the request of the staff to the Blue Ribbon Commission on America’s Nuclear Future (“BRC”), we have reviewed the following questions:
1. Is there legal authority for DOE or any other entity to undertake to site a repository for “co-mingled” nuclear materials (i.e., civilian and defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW)) at any site other than Yucca Mountain?
Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II
Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II
The objective of this analysis is to characterize the criticality safety aspects of a degraded Department of Energy spent nuclear fuel (DOESNF) canister containing Masachusetts Institute of Technology (MIT) or Oak Ridge Research (ORR) fuel in the Five Pack defense high level waste (DHLW) waste package to demonstrate concept viability related to use in the Minded Geologic Disposal System (MGDS) environment for the postclosure time frame.
Letter - Approval of Request to Establish and Populate an Ad Hoc Subcommittee on the Co-Mingling of Defense and Commercial Waste
Letter - Approval of Request to Establish and Populate an Ad Hoc Subcommittee on the Co-Mingling of Defense and Commercial Waste
Gentlemen,
In accordance with the charter of the Blue Ribbon Commission on America's Nuclear Future and as the Secretary's designee, I approve your request to establish an ad hoc subcommittee to review and make a recommendation to the Commission regarding the co-mingling of defense and commercial waste.
This letter also serves to appoint Dr. Allison Macfarlane as the chair of the subcommittee and the membership of the subcommittee as identified in your letter to me dated October 31, 2011.
Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode
Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode
Thep purpose of this calculation is to perform degraded mode criticality evaluations of plutonium disposed in a ceramic waste form and emplaced in a Monitored geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for plutonium immobilization is considered in this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilized plutonium) in each.
Strategies for Application of Isotopic Uncertainties in Burnup Credit
Strategies for Application of Isotopic Uncertainties in Burnup Credit
Uncertainties in the predicted isotopic concentrations in spent nuclear fuel represent one of the largest
sources of overall uncertainty in criticality calculations that use burnup credit. The methods used to
propagate the uncertainties in the calculated nuclide concentrations to the uncertainty in the predicted
neutron multiplication factor (keff) of the system can have a significant effect on the uncertainty in the
safety margin in criticality calculations and ultimately affect the potential capacity of spent fuel transport
EXECUTIVE SUMMARY ENVIRONMENTAL IMPACT STATEMENT Waste Isolation Pilot Plant
EXECUTIVE SUMMARY ENVIRONMENTAL IMPACT STATEMENT Waste Isolation Pilot Plant
The purpose of this document is to provide a summary of the environmental impact statement for the Waste Isolation Pilot Plant (WIPP) project. The Draft Environmental Impact Statement for the WIPP was published by the U.S. Department of Energy (DOE) in April 1979. This document was reviewed and commented on by members of the general public, private organizations, and governmental agencies. The Final Environmental Impact Statement was subsequently published in October, 1980.