slides - ISFSI Pad Design Issues
slides - ISFSI Pad Design Issues
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Disposal Criticality Analysis Methodology Topical Report describes a methodology for performing postclosure criticality analyses within the repository at Yucca Mountain, Nevada. An important component of the postclosure criticality analysis is the calculation of conservative isotopic concentrations for spent nuclear fuel. This report documents the isotopic calculation methodology. The isotopic calculation methodology is shown to be conservative based upon current data for pressurized water reactor and boiling water reactor spent nuclear fuel.
The criticality consequence analysis for pressurized water reactor (PWR) waste packages (WP) (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 1997) focused on results obtained by maximizing postulated rates of reactivity insertion to assure no synergistic reactions could occur among waste packages from hypothetical criticality events. Other variables potentially influencing the criticality consequences were held constant during the above referenced analysis.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The objective of this calculation is to evaluate the probability of flooding a waste package with seepage water. Disruptive events can affect the Engineered Barrier System (EBS) components and have the potential to allow an advective flow of seepage water to reach the waste package. The advective and diffusive flow paths into the waste package have the potential to result in water accumulation inside the waste package, which in turn can lead to a potentially critical configuration. This calculation will evaluate the following:
In this study, the long-term geochemical behavior of waste package (WP), containing Pu-ceramic, was modeled. The ceramic under consideration contains Ti, U, Pu, Gd and Hf in a pyrochlore structure; the Gd and Hf stabilize the mineral structure, but are also intended to provide criticality control. The specific study objectives were to determine:
1) the extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial package configuration (such that it can be effective in preventing criticality), and
The emplacement of nuclear waste in the proposed geologic repository must satisfy relevant regulatory requirements with respect to criticality, 10CFR60. I31 (h) (Ref. 25). The waste packages for the various waste forms will be designed to preclude criticality (typically by the inclusion of neutron absorbers) even if the waste package becomes filled with water. Criticality may, however, be possible if the contents of the waste package become degraded in such a way that the fissile material can be separated from the neutron absorbers, while sufficient moderator is retained.
The purpose ofthis engineering calculation is to estimate the frequency of misloading spent nuclear fuel (SNF) assemblies that would result in exceeding the criticality design basis of a waste package (WP). This type of misload - a reactivity misload - results from the incorrect placement of one or more fuel assemblies into a waste package such that the criticality controls do not match the required controls for the fuel assemblies.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Fuel from the Fast Flux Test Facility ' (FFTF) has been considered for disposal at the proposed
The U.S. Nuclear Regulatory Commission (NRC) is evaluating the safety and security of spent nuclear fuel (SNF) stored in dry casks for extended time periods before transportation to a location where the SNF is further processed or permanently disposed.
The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the Disposal Criticality Analysis Methodology Topical Report (YMP 2000).
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The objective of this calculation is to perform additional degraded mode criticality evaluations of the Department of Energy's (DOE) Fast Flux Test Facility (FFTF) Spent Nuclear Fuel (SNF) codisposed in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP). The scope of this calculation is limited to the most reactive degraded configurations of the codisposal WP with an almost intact Ident-69 container (breached and flooded but otherwise non-degraded) containing intact FFTF SNF pins.
The purpose of this document is to summarize the degraded waste package disposal criticality evaluations which were performed in fiscal years I995 and I996. These evaluations were described in detail in 4 previous documents (Refs. I through 4). The initial version of this summary has been described in the I996 Disposal Criticality Analysis Methodology Technical Report (Ref. 5). A topical report planned for 1998 will present the methodology in its final form for approval by the US Nuclear Regulatory Commission.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this calculation is to evaluate the transient behavior and consequences of a worst- case criticality event involving intact pressurized water reactor (PWR) mixed-oxide (MOX) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR waste package (WP). This calculation will provide information necessary for demonstrating that the consequences of a worst-case criticality event involving intact PWR MOX SNF are insignificant in their effect on the overall radioisotopic inventory and on the integrity of the repository.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the viability of the UCF waste package concept with respect to criticality regulatory requirements in compliance with the goals of the Waste Package Implementation Plan5·1 for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013