Skip to main content

Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository

As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.

Multiscale Thermohydrologic Model

The intended purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. The goal of the MSTHM is to predict a reasonable range of possible thermal-hydrologic conditions within the emplacement drift.

LCEs for Naval Reactor Benchmark Calculations

The purpose of this engineering calculation is to document the MCNP4B2LVevaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 22 different cases with varied design parameters. Some of these LCEs (10) are documented in existing references (Ref. 7.1 and 7.2), but were re-run for this calculation file using more neutron histories.

Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF

The results of the MCNP criticality safety calculations described in this document are presented in Section 7.1. Based on the results presented attributes of the TAD canister-based systems that are important to ensuring their subcriticality are established. These attributes can be categorized according to the criticality control parameter that is impacted. Based on the categorization presented it is seen that moderation control is the underlying criticality control parameter for TAD canister-based systems containing CSNF with a maximum initial enrichment of 5 wt.% 235U/U.

Criticality Analysis of Pu and U accumulations in a Tuff Fracture Network

The objective of this analysis is to evaluate accumulations within the thermally altered tuff surrounding a drift. The evaluation examines accumulation of Uranium minerals (sddyite), Plutonium oxide (Pu2O), and combinations of these materials. A hypothetical model of the tuff is used to provide insight into the factors that affect criticality for this near-field scenario. The factors examined include: the size of the accumulation, the fissile composition of the accumulation, the water of clayey material in the accumulation and the water fraction in the tuff.

Commercial Spent Nuclear Fuel Waste Package Misload Analysis

The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design.

Analysis of Critical Benchmark Experiments for Configurations External to WP

The Disposal Criticality Analysis Methodology Topical Report (Reference 1) states that the accuracy of the criticality analysis methodology (MCNP Monte Carlo code and cross-section data) designated to assess the potential for criticality of various configurations in the Yucca Mountain proposed repository is established by evaluating appropriately selected benchmark critical experiments.

Isotopic Generation and Verification of the PWR Application Model

The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the Disposal Criticality Analysis Methodology Topical Report (YMP 2000).

Long-Term Criticality Control Issues for the MPC (SCPB: N/A)

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) in response to a request received via a QAP-3-12 Design Input Data Request (Reference 5.1) from Waste Acceptance, Storage, & Transportation (WAST) Design (formerly MRSMPC Design). This design analysis is an answer to the Design Input Data Request to provide: Specific requirements for long-term criticality control.

Commercial Spent Nuclear Fuel Waste Package Misload Analysis

The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected
commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.