Skip to main content

Investigation of Burnup Credit Modeling Issues Associated with BWR Fuel

This report investigates various calculational modeling issues associated with boilingwater-
reactor (BWR) fuel depletion relevant to burnup credit. To date, most of the efforts in
burnup-credit studies in the United States have focused on issues related to pressurized-waterreactor
(PWR) fuel. However, requirements for the permanent disposal of BWR fuel have
necessitated the development of methods for predicting the spent fuel contents for such fuels.
Concomitant with such analyses, validation is also necessary. This report provides a summary of

Internationalization of the Nuclear Fuel Cycle

Following the proposals for nuclear fuel assurance of International Atomic Energy
Agency (IAEA) Director General Mohamed El Baradei, former Russian President Vladimir V.
Putin, and U.S. President George W. Bush, joint committees of the Russian Academy of
Sciences (RAS) and the U.S. National Academies (NAS) were formed to address these and other
fuel assurance concepts and their links to nonproliferation goals. The joint committees also
addressed many technology issues relating to the fuel assurance concepts. This report provides

User Manual for the Total System Model Version 6.0 Preprocessor

The Total System Model Preprocessor (TSMPP) is a part of the Total System Model (TSM),
which is a PC-based simulator that is a decision aid to achieve overall Office of Civilian
Radioactive Waste Management (OCRWM) disposal objectives. The TSMPP combines
information about existing conditions, such as waste inventory estimates and site capabilities,
with projections of future conditions, such as projected waste discharges and expected cask
capabilities, to provide a waste shipment schedule that is input to the TSM. The TSM then uses

Review of DOE's Nuclear Energy Research and Development Program - Summary

There has been a substantial resurgence of interest in nuclear power in the United States
over the past few years. One consequence has been a rapid growth in the research
budget of DOE’s Office of Nuclear Energy (NE). In light of this growth, the Office of
Management and Budget included within the FY2006 budget request a study by the
National Academy of Sciences to review the NE research programs and recommend
priorities among those programs. The programs to be evaluated were: Nuclear Power

Nuclear Waste Bill Feedback

On April 25, 2013, Senators Wyden, Alexander, Feinstein, and Murkowski released a draft bill to create a sustainable, participatory process for managing nuclear waste. The senators requested comments and suggestions on the draft bill, as well as on the alternative language for siting an interim storage facility proposed by Senators Alexander and Feinstein. In addition, the senators posed eight questions on which they sought comments.

Summary Report of Commercial Reactor Critical Analyses Performed for the Disposal Criticality Analysis Methodology

The "Summary Report of Commercial Reactor Critical Analyses Perfonned for the Disposal Criticality Analysis Methodology" contains a summary of the commercial reactor critical (CRC) analyses used to support the validation of the criticality models for spent commercial light water reactor (LWR) fuel.

An Extension of the Validation of SCALE (SAS2H) Isotopic Predictions of PWR Spent Fuel

Isotopic characterization of spent fuel via depletion and decay calculations is necessary for
determination of source terms for subsequent system analyses involving heat transfer, radiation
shielding, isotopic migration, etc. Unlike fresh fuel assumptions typically employed in the criticality
safety analysis of spent fuel configurations, burnup credit applications also rely on depletion and
decay calculations to predict the isotopic composition of spent fuel. These isotopics are used in

Management of Commercial High Level and Transuranium Contaminated Radioactive Waste

This report summarizes the results of EPA's review of the AEC
draft environmental statement, "Management of Commercial High-Level
and Transuranium-Contaminated Radioactive Waste" (WASH-1539). The
means by which high-level and long-lived radioactive wastes are
managed constitutes one of the most important questions upon which
the public acceptability of nuclear power, with its social and economic
benefits, will be determined. While the generation of power by
nuclear means offers certain benefits from the environmental viewpoint,

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.