Skip to main content

The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu

The Radioactive Waste Management Directorate (RWMD) is responsible for implementing geological disposal of the UK’s higher-activity radioactive wastes. RWMD’s research into geological disposal considers safety during waste transport to a disposal facility, during waste disposal operations, and once the facility has been closed. The wastes for disposal comprise a wide range of materials and include some fissile radionuclides.

Criticality Risks During Transportation of Spent Nuclear Fuel

This report presents a best-estimate probabilistic risk assessment (PRA) to quantify the frequency of criticality accidents during railroad transportation of spent nuclear fuel casks. The assessment is of sufficient detail to enable full scrutiny of the model logic and the basis for each quantitative parameter contributing to criticality accident scenario frequencies. The report takes into account the results of a 2007 peer review of the initial version of this probabilistic risk assessment, which was published as EPRI Technical Report 1013449 in December 2006.

Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety

Utilization of burnup credit in criticality safety analysis for long-term disposal of spent
nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile
material that will be present in the repository. Burnup-credit calculations are based on depletion
calculations that provide a conservative estimate of spent fuel contents (in terms of criticality
potential), followed by criticality calculations to assess the value of the effective neutron

Dry Transfer Facility Criticality Safety Calculations

This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the Project Design Criteria (PDC) Document (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in Project Requirements Document (Canori and Leitner 2003 [DIRS 166275], p.

Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF

The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of the transportation, aging and disposal (TAD) canister-based systems.

Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel

This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance.

Bias Determination for DOE Nuclear Fuels

The purpose of this calculation is to establish the relative change in the effective neutron multiplication factor (keff) due to the use of MCNP unique identifiers (ZAIDs) in Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF (Reference 2.2.1, Attachment 3, MCNP inputs.zip) that are different to the ZAIDs used in the Analysis of Critical Benchmark Experiments and Critical Limit Calculation for DOE SNF (Reference 2.2.5, Table 5-3).

Evaluation of Burnup Credit for Accommodating PWR Spent Nuclear Fuel in High-capacity Cask Designs

This paper presents an evaluation of the amount of burnup credit needed for high-density casks to
transport the current U.S. inventory of commercial spent nuclear fuel (SNF) assemblies. A prototypic
32-assembly cask and the current regulatory guidance were used as bases for this evaluation.
By comparing actual pressurized-water-reactor (PWR) discharge data (i.e., fuel burnup and initial
enrichment specifications for fuel assemblies discharged from U.S. PWRs) with actinide-only-based

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.