slides GC-859 Pilot
slides GC-859 Pilot
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this calculation is to document the Crystal River Unit 3 pressurized waste reactor (PWR) reactivity calculations performed as part of the commercial reactor critical (CRC) evaluation program. CRC evaluation reactivity calculations are performed at a number of statepoints, representing reactor start-up critical conditions at either beginning of life (BOL), beginning of cycle (BOC), or mid-cycle when the reactor resumed operation after a shutdown.
The objective of Calculation of Isotopic Bias and Uncertainty for BWR SNF is to quantify the computational bias and uncertainty in the multiplication factor (keff) to be used for Boiling Water Reactor (BWR) spent nuclear fuel (SNF) burn-up credit. The scope of this bias and uncertainty determination covers 38 different radiochemical assay (RCA) spent fuel samples from 14 different fuel assemblies that were irradiated in four different BWRs. The irradiated fuel samples evaluated span an enrichment range of 2.53 weight percent U-235 through 3.95 weight percent U-235.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The "Summary Report of Commercial Reactor Critical Analyses Perfonned for the Disposal Criticality Analysis Methodology" contains a summary of the commercial reactor critical (CRC) analyses used to support the validation of the criticality models for spent commercial light water reactor (LWR) fuel.
The objective of this calculation is to perform additional degraded mode criticality evaluations of the Department of Energy's (DOE) Fast Flux Test Facility (FFTF) Spent Nuclear Fuel (SNF) codisposed in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP). The scope of this calculation is limited to the most reactive degraded configurations of the codisposal WP with an almost intact Ident-69 container (breached and flooded but otherwise non-degraded) containing intact FFTF SNF pins.
The purpose of this document is to summarize the degraded waste package disposal criticality evaluations which were performed in fiscal years I995 and I996. These evaluations were described in detail in 4 previous documents (Refs. I through 4). The initial version of this summary has been described in the I996 Disposal Criticality Analysis Methodology Technical Report (Ref. 5). A topical report planned for 1998 will present the methodology in its final form for approval by the US Nuclear Regulatory Commission.
Isotopic characterization of spent fuel via depletion and decay calculations is necessary for
determination of source terms for subsequent system analyses involving heat transfer, radiation
shielding, isotopic migration, etc. Unlike fresh fuel assumptions typically employed in the criticality
safety analysis of spent fuel configurations, burnup credit applications also rely on depletion and
decay calculations to predict the isotopic composition of spent fuel. These isotopics are used in
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this calculation is to evaluate the transient behavior and consequences of a worst- case criticality event involving intact pressurized water reactor (PWR) mixed-oxide (MOX) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR waste package (WP). This calculation will provide information necessary for demonstrating that the consequences of a worst-case criticality event involving intact PWR MOX SNF are insignificant in their effect on the overall radioisotopic inventory and on the integrity of the repository.
This report summarizes the results of EPA's review of the AEC
draft environmental statement, "Management of Commercial High-Level
and Transuranium-Contaminated Radioactive Waste" (WASH-1539). The
means by which high-level and long-lived radioactive wastes are
managed constitutes one of the most important questions upon which
the public acceptability of nuclear power, with its social and economic
benefits, will be determined. While the generation of power by
nuclear means offers certain benefits from the environmental viewpoint,
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.
The 7th Forum on Stakeholder Confidence (FSC) National Workshop and Community Visit was held on 7-9 April 2009 in Bar-le-Duc, France.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since
1990 under the contract with Science and Technology Agency of Japan entitled ‘Technical Development on
Criticality Safety Management for Spent LWR Fuels.’ Main purposes of this work are to obtain the
experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup
and criticality calculation codes. In this work three major experiments of exponential experiments for
This report describes the calculation method developed for the projection of future utility spent nuclear fuel (SNF) discharges in regard to their timing, quantity, burnup, and initial enrichment. This projection method complements the utility-supplied RW-859 data on historic discharges and short-term projections of SNF discharges by providing long-term projections that complete the total life cycle of discharges for each of the current U.S. nuclear power reactors.
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the viability of the UCF waste package concept with respect to criticality regulatory requirements in compliance with the goals of the Waste Package Implementation Plan5·1 for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives.
This Memorandum analyzes issues related to the Standard Contract between the U.S. Department of Energy (“DOE”) and the “utilities.” Beginning with a discussion of specific provisions of the Standard Contract, this Memorandum then analyzes the status of lawsuits involving the Standard Contract, reviews issues related to on-site storage of spent fuel and HLW, and assesses the prospects for modifying the current waste-disposal regime through Federal legislation or amendments to the Standard Contract.
Confidence in the long-term safety of deep geological disposal, and the ways in which this
confidence can be obtained and communicated, are topics of great importance to the radioactive waste
management community.1
The technical aspects of confidence have been the subject of considerable debate, especially
the concept of model validation. It has, for example, been pointed out that it is impossible to describe
fully the evolution of an open system, such as a repository and its environment, that cannot be
This report describes a novel approach developed at the Oak Ridge National Laboratory
(ORNL) for the estimation of the uncertainty in the prediction of the neutron multiplication factor
for spent nuclear fuel. This technique focuses on burnup credit, where credit is taken in criticality
safety analysis for the reduced reactivity of fuel irradiated in and discharged from a reactor.
Validation methods for burnup credit have attempted to separate the uncertainty associated with
This paper draws on my experience as a reviewer of the scientific programs and performance assessments of the geological repository for transuranic waste at the Waste Isolation Pilot Plant in New Mexico and the proposed repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. In addition, I have served on numerous committees of the National Research Council that have addressed many aspects of nuclear waste management.
This calculation demonstrates how uncertainties in half-life and branching fraction affect postclosure isotopic concentrations and the quantification of those effects in terms of reactivity.
This study is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probablility of criticality in the far- field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses.
The Monitored Geologic Repository (MGR) Waste Package Project of the BSC Management and Operating Contractor for the Department of Energy's Office of Civilian Radioactive Waste Management performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Enrico Fermi Reactor owned by the DOE (Ref. 9). The Fermi SNF has been considered for disposal at the proposed Yucca Mountain site.
As part of a larger program to study mixed-oxide fuel subject to high burnup, some UO2 samples were exposed and analyzed. This report discusses results from the analysis of a UO sample that was burned in a boiling-water reactor (BWR) to approximately 57 GWd/t. The sample