Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit
Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit
This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnupcredit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problemlconfiguration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies.
Neutronics Benchmark for the Quad Cities-1 (Cycle 2) Mixed-Oxide Assembly Irradiation
Neutronics Benchmark for the Quad Cities-1 (Cycle 2) Mixed-Oxide Assembly Irradiation
Reactor physics computer programs are important tools that will be-used to estimate mixed oxide
fuel (MOX) physics performance in support of weapons grade plutonium disposition in U.S. and
Russian Federation reactors. Many of the computer programs used today have not undergone
calculational comparisons to measured data obtained during reactor operation. Pin power, the
buildup of transuranics, and depletion of gadolinium measurements were conducted (under Electric
Power Research Institute sponsorship) on uranium and MOX pins irradiated in the Quad Cities-l
Supplement to the Disposal Criticality Analysis Methodology
Supplement to the Disposal Criticality Analysis Methodology
Overview of High-Level Nuclear Waste Materials Transportation: Processes, Regulations, Experience and Outlook in the U.S.
Overview of High-Level Nuclear Waste Materials Transportation: Processes, Regulations, Experience and Outlook in the U.S.
Every year, more than 300 million packages of hazardous material are shipped in the
United States (U.S.). Most of the hazardous material shipped – about 97 percent – is
flammable, explosive, corrosive or poisonous. About 1 percent – three million packages –
of the hazardous materials shipped annually contains radioactive material, most of them
from medical and industrial applications. [DOT 1998b]
Spent nuclear fuel comprises a very small fraction of the hazardous materials packages
Co-Chair Letter to Sec. Chu
Co-Chair Letter to Sec. Chu
Dear Secretary Chu:
At the direction of the President, you charged the Blue Ribbon Commission on America’s
Nuclear Future with reviewing policies for managing the back end of the nuclear fuel
cycle and recommending a new plan. We thank you for choosing us to serve as Co-
Chairmen of the Commission and for selecting the talented and dedicated set of
Commissioners with whom we serve.
We have sought to ensure that our review is comprehensive, open and inclusive. The
Commission and its subcommittees have heard from hundreds of individuals and
Principle Isotope Burnup Credit Loading Curve for the 21 PWR Waste Package
Principle Isotope Burnup Credit Loading Curve for the 21 PWR Waste Package
The purpose of this calculation is to determine the required minimum burnup as a function of initial pressurized water reactor (PWR) assembly enrichment that would permit loading of fuel into the 21 PWR waste package (WP), as provided for in QAP-2-0 Activity Evaluation, Perform Criticality, Thermal, Structural, & Shielding Analyses (Reference 7.1).
Limited Burnup Credit in Criticality Safety Analysis: A Comparison of ISG-8 and Current International Practice
Limited Burnup Credit in Criticality Safety Analysis: A Comparison of ISG-8 and Current International Practice
This report has been prepared to qualitatively assess the amount of burnup credit (reactivity margin) provided by ISG-8 compared to that provided by the burnup credit methodology developed and currently applied in France. For the purposes of this study, the methods proposed in the DOE Topical Report have been applied to the ISG-8 framework since this methodology (or one similar to it) is likely to form the basis of initial cask licensing applications employing limited burnup credit in the United States.
Recommendations on the Credit for Cooling Time in PWR Burnup Credit Analyses
Recommendations on the Credit for Cooling Time in PWR Burnup Credit Analyses
The U.S. Nuclear Regulatory Commission's guidance on burnup credit for pressurized-water-reactor (PWR) spent nuclear fuel (SNF) recommends that analyses be based on a cooling time of five years. This recommendation eliminates assemblies with shorter cooling times from cask loading and limits the allowable credit for reactivity reduction associated with cooling time. This report examines reactivity behavior as a function of cooling time to assess the possibility of expanding the current cooling time recommendation for SNF storage and transportation.
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
Hydrogen-Induced Cracking of the Drip Shield
Hydrogen-Induced Cracking of the Drip Shield
Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction.
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
Analysis of Dust Deliquescence for FEP Screening
Analysis of Dust Deliquescence for FEP Screening
The purpose of this report is to evaluate the potential for penetration of the Alloy 22 (UNS N06022) waste package outer barrier by localized corrosion due to the deliquescence of soluble constituents in dust present on waste package surfaces. The results support a recommendation to exclude deliquescence-induced localized corrosion (pitting or crevice corrosion) of the outer barrier from the total system performance assessment for the license application (TSPA-LA).
CSNF Loading Curve Sensitivity Analysis
CSNF Loading Curve Sensitivity Analysis
The purpose of this scientific analysis report, CSNF Loading Curve Sensitivity Analysis, is to establish the required minimum burnup as a function of initial enrichment for both pressurized water reactor (PWR) and boiling water reactor (BWR) commercial spent nuclear fuel (CSNF) that would allow permanent disposal of these waste forms in the geologic repository at Yucca Mountain. The relationship between the required minimum burnup and fuel assembly initial enrichment forms a loading curve.
Evaluation of Codisposal Viability for MOX (FFTF) DOE-Owned Fuel
Evaluation of Codisposal Viability for MOX (FFTF) DOE-Owned Fuel
There are more than 250 forms of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. Fast Flux Test Facility (FFTF) fuel has been designated as the representative fuel for the mixed-oxide (MOX) fuel group which is a mixture of uranium and plutonium oxides.
Dissolved Concentration Limits of Elements with Radioactive Isotopes
Dissolved Concentration Limits of Elements with Radioactive Isotopes
The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments.
Overview of the Section 180(c) Program: History, Lessons Learned, and Potential Next Steps
Overview of the Section 180(c) Program: History, Lessons Learned, and Potential Next Steps
The U.S. Department of Energy’s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible, under the Nuclear Waste Policy Act of 1982, for the transportation of spent nuclear fuel and high-level radioactive waste from point of origin to destination at a federal storage or disposal facility. Section 180(c), written into the Nuclear Waste Policy Act Amendments of 1987, requires OCRWM to prepare public safety officials along the routes for these shipments.
Going the Distance? The Safe Transport of Spent Nuclear Fuel and High-Level Radioactive Waste in the United States - Summary
Going the Distance? The Safe Transport of Spent Nuclear Fuel and High-Level Radioactive Waste in the United States - Summary
This new report from the National Research Council’s Nuclear and Radiation Studies Board (NRSB) and the Transportation Research Board reviews the risks and technical and societal concerns for the transport of spent nuclear fuel and high-level radioactive waste in the United States. Shipments are expected to increase as the U.S. Department of Energy opens a repository for spent fuel and high-level waste at Yucca Mountain, and the commercial nuclear industry considers constructing a facility in Utah for temporary storage of spent fuel from some of its nuclear waste plants.
BRC Co-Chair Letter to The Honorable Fred Upton, Chairman, U.S. House Energy and Commerce Committee and The Honorable John Shimkus, Chairman, U.S. House Energy and Commerce Committee, Subcommittee on Environment and the Economy
BRC Co-Chair Letter to The Honorable Fred Upton, Chairman, U.S. House Energy and Commerce Committee and The Honorable John Shimkus, Chairman, U.S. House Energy and Commerce Committee, Subcommittee on Environment and the Economy
Dear Representatives Upton and Shimkus,
At the direction of the President, the Secretary of Energy established the Blue Ribbon
Commission on America’s Nuclear Future and charged it with reviewing policies for
managing the back end of the nuclear fuel cycle. We are serving as the Co-Chairmen of
the Commission and have taken note of your recent comments about the Commission’s
work.
Your comments echo those we have heard from several members of Congress and from
people across the country who believe the United States should not abandon the
SAS2H Generated Isotopic Concentrations for B&W 15xl5 PWR Assembly (SCPB: N/A)
SAS2H Generated Isotopic Concentrations for B&W 15xl5 PWR Assembly (SCPB: N/A)
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations.
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 1-Summary
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 1-Summary
The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor
criticality safety analyses be validated against experimental measurements. If credit is to be taken for
the reduced reactivity of burned or spent fuel relative to its original $fresh# composition, it is
necessary to benchmark computational methods used in determining such reactivity worth against
spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to
OECD/NEA Burnup Credit Criticality Benchmarks Phase IIIB: Burnup Calculations of BWR Fuel Assemblies for Storage and Transport
OECD/NEA Burnup Credit Criticality Benchmarks Phase IIIB: Burnup Calculations of BWR Fuel Assemblies for Storage and Transport
The report describes the final results of the Phase IIIB Benchmark conducted by the
Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy
Agency (NEA) of the Organization for Economic Cooperation and Development (OECD).
The Benchmark was intended to compare the predictability of current computer code and
data library combinations for the atomic number densities of an irradiated BWR fuel
assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM
Public Beliefs, Concerns and Preferences Regarding the Management of Used Nuclear Fuel and High Level Radioactive Waste
Public Beliefs, Concerns and Preferences Regarding the Management of Used Nuclear Fuel and High Level Radioactive Waste
US policy for management of used nuclear fuel (UNF) and high level radioactive wastes (HLRW) is at a crossroads, and the success of new policy directions will depend in part on broad public acceptance and support. In this paper I provide an overview of the evidence concerning the beliefs and concerns of members of the American public regarding UNF and HLNW. I also characterize the evidence on American’s policy preferences for management of these materials.
Evaluation of Measured LWR Spent Fuel Composition Data for Use in Code Validation End-User Manual
Evaluation of Measured LWR Spent Fuel Composition Data for Use in Code Validation End-User Manual
Burnup credit (BUC) is a concept applied in the criticality safety analysis of spent nuclear fuel
in which credit or partial credit is taken for the reduced reactivity worth of the fuel due to both fissile
depletion and the buildup of actinides and fission products that act as net neutron absorbers.
Typically, a two-step process is applied in BUC analysis: first, depletion calculations are performed
to estimate the isotopic content of spent fuel based on its burnup history; second, three-dimensional