Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Probabilistic External Criticality Evaluation
Probabilistic External Criticality Evaluation
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
Nuclear Criticality Calculations for the Wet Handling Facility
Nuclear Criticality Calculations for the Wet Handling Facility
The purpose of this calculation is to apply the process described in the TDR-DS0-NU-000001 Rev. 02, Preclosure Criticality Analysis Process Report (Ref. 2.2.25) to aid in establishing design and operational criteria important to criticality safety and to identify potential control parameters and their limits important to the criticality safety of commercial spent nuclear fuel (CSNF) handling operations in the Wet Handling Facility (WHF)
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of Department of Energy (DOE) standardized Spent Nuclear Fuel (SNF) canisters.
Bias and Range of Applicability Determinations for Commercial Nuclear Fuels
Bias and Range of Applicability Determinations for Commercial Nuclear Fuels
The purpose of this calculation is to apply the process described in the Preclosure Criticality Analysis Process Report (Ref. 2.2.12) to establish the bias for keff calculations performed for commercial nuclear fuels using the MCNP code system. This bias will be used in criticality safety analyses as part of the basis for establishing the upper subcritical limit (USL). This calculation also defines the range of applicability (ROA) for which the bias may be used directly without need to consider additional penalties on the USL.
Preclosure Criticality Safety Analysis
Preclosure Criticality Safety Analysis
The means to prevent and control criticality must be addressed as part of the Preclosure Safety Analysis (PCSA) required for compliance with 10 CFR Part 63 [DIRS 180319], where the preclosure period covers the time prior to permanent closure activities. This technical report presents the nuclear criticality safety evaluation that documents the achievement of this objective.
LINE - Leadership in Nuclear Energy Commission - Full Report
LINE - Leadership in Nuclear Energy Commission - Full Report
Recognizing that Idaho has a major strategic and economic interest in maintaining INL’s leadership role and in helping
the nuclear energy industry successfully meet these broader challenges, Idaho governor C.L. “Butch” Otter established
the Leadership in Nuclear Energy or “LINE” Commission in February 2012.
The Governor recognized that recent national developments in the nuclear energy sector will cause the State of Idaho to
face important choices in the future and that he needed to understand the best options available.
Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants
Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants
The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs).
Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit
Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit
This report proposes and documents a computational benchmark for the estimation of the
additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor
actinides in a burnup-credit storage/transport environment, relative to SNF compositions
containing only the major actinides. The benchmark problem/configuration is a generic burnupcredit
cask designed to hold 68 boiling water reactor (BWR) spent nuclear fuel assemblies. The
purpose of this computational benchmark is to provide a reference configuration for the
Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel
Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel
This report has been prepared to support technical discussion of and planning for future
research supporting implementation of burnup credit for boiling-water reactor (BWR) spent fuel
storage in spent fuel pools and storage and transport cask applications. The review and
discussion in this report are based on knowledge and experience gained from work performed
in the United States and other countries, including experience with burnup credit for
pressurized-water reactor (PWR) spent fuel. Relevant physics and analysis phenomena are
Impacts Associated with Transfer of Spent Nuclear Fuel from Spent Fuel Storage Pools to Dry Storage After Five Years of Cooling
Impacts Associated with Transfer of Spent Nuclear Fuel from Spent Fuel Storage Pools to Dry Storage After Five Years of Cooling
In order to decrease the risk of terrorism, it has been suggested that used nuclear fuel should be
moved to dry storage early, after five years cooling in the spent fuel pool. The Nuclear
Regulatory Commission (NRC) has reviewed this issue and issued a white paper stating that it
did not believe such a measure was justified in light of additional security measures implemented
at nuclear plants and the impacts associated with the early movement of used fuel into dry
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
Criticality Risks During Transportation of Spent Nuclear Fuel
Criticality Risks During Transportation of Spent Nuclear Fuel
This report presents a best-estimate probabilistic risk assessment (PRA) to quantify the frequency of criticality accidents during railroad transportation of spent nuclear fuel casks. The assessment is of sufficient detail to enable full scrutiny of the model logic and the basis for each quantitative parameter contributing to criticality accident scenario frequencies. The report takes into account the results of a 2007 peer review of the initial version of this probabilistic risk assessment, which was published as EPRI Technical Report 1013449 in December 2006.
The International Security Implications Of U.S. Domestic Nuclear Power Decisions
The International Security Implications Of U.S. Domestic Nuclear Power Decisions
The United States makes decisions regarding the domestic uses of nuclear energy and the nuclear fuel cycle primarily based economic considerations, domestic political constraints, and environmental impact concerns. Such factors influence U.S. foreign policy decisions as well, but foreign policy decisions are often more strongly determined by national security considerations, including concerns about nuclear weapons proliferation and nuclear terrorism.
A Technology Roadmap for Generation IV Nuclear Energy Systems
A Technology Roadmap for Generation IV Nuclear Energy Systems
To advance nuclear energy to meet future energy needs, ten countries—Argentina, Brazil, Canada, France, Japan, the Republic of Korea, the Republic of South Africa, Switzerland, the United Kingdom, and the United States—have agreed on a framework for international cooperation in research for a future generation of nuclear energy systems, known as Generation IV. The figure below gives an overview of the generations of nuclear energy systems. The first generation was advanced in the 1950s and 60s in the early prototype reactors.
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Utilization of burnup credit in criticality safety analysis for long-term disposal of spent
nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile
material that will be present in the repository. Burnup-credit calculations are based on depletion
calculations that provide a conservative estimate of spent fuel contents (in terms of criticality
potential), followed by criticality calculations to assess the value of the effective neutron
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance.
Bias Determination for DOE Nuclear Fuels
Bias Determination for DOE Nuclear Fuels
The purpose of this calculation is to establish the relative change in the effective neutron multiplication factor (keff) due to the use of MCNP unique identifiers (ZAIDs) in Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF (Reference 2.2.1, Attachment 3, MCNP inputs.zip) that are different to the ZAIDs used in the Analysis of Critical Benchmark Experiments and Critical Limit Calculation for DOE SNF (Reference 2.2.5, Table 5-3).
Abridged History of Reactor and Fuel Cycle Technologies Development: A White Paper for the Reactor and Fuel Cycle Technology Subcommittee of the Blue Ribbon Commission
Abridged History of Reactor and Fuel Cycle Technologies Development: A White Paper for the Reactor and Fuel Cycle Technology Subcommittee of the Blue Ribbon Commission
The almost limitless energy of the atom was first harnessed in the United States, as scientists proved the basic physics of nuclear fission in a rudimentary reactor built in the floor of a squash court at the University of Chicago in 1942, and then harnessed that proven energy source in the form of atomic weapons used to end World War II. Scientists who accomplished this feat moved quickly after World War II to harness that power for peaceful uses, focusing primarily on electricity generation for industry, commerce, and household use.
U.S. Department of Energy Nuclear Waste Fund Fee Adequacy Assessment Report
U.S. Department of Energy Nuclear Waste Fund Fee Adequacy Assessment Report
The purpose of this U.S. Department of Energy Nuclear Waste Fund Fee Adequacy Assessment
Report (Assessment) is to present an analysis of the adequacy of the fee being paid by nuclear
power utilities for the permanent disposal of their SNF and HLW by the United States
government.
This Assessment consists of six sections: Section 1 provides historical context and a comparison
to previous fee adequacy assessments; Section 2 describes the system, cost, income, and
Dry Transfer Facility Criticality Safety Calculations
Dry Transfer Facility Criticality Safety Calculations
This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the Project Design Criteria (PDC) Document (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in Project Requirements Document (Canori and Leitner 2003 [DIRS 166275], p.
Canister Handling Facility Criticality Safety Calculations
Canister Handling Facility Criticality Safety Calculations
This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC (Bechtel SAIC Company) 2004 (DIRS 167614).
CURRENT U.S. DEPARTMENT OF ENERGY NUCLEAR ENERGY RD&D PROGRAMS AND PLANS
CURRENT U.S. DEPARTMENT OF ENERGY NUCLEAR ENERGY RD&D PROGRAMS AND PLANS
This document summarizes DOE’s commercial nuclear energy RD&D program based on a R&D roadmap and on DOE/NE’s budget request for fiscal year 2011. The roadmap is written at a high level and is mostly qualitative in terms of activities, milestones and decisions to be made and does not contain budget information. The fiscal year 2011 budget request contains more specific and detailed information on activities, milestones, decisions, and budgets but only for fiscal year 2011 and the two preceding fiscal years.
Review of DOE's Nuclear Energy Research and Development Program - Summary
Review of DOE's Nuclear Energy Research and Development Program - Summary
There has been a substantial resurgence of interest in nuclear power in the United States
over the past few years. One consequence has been a rapid growth in the research
budget of DOE’s Office of Nuclear Energy (NE). In light of this growth, the Office of
Management and Budget included within the FY2006 budget request a study by the
National Academy of Sciences to review the NE research programs and recommend
priorities among those programs. The programs to be evaluated were: Nuclear Power