Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package
Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
Reactor and Fuel Cycle Technology Subcommittee Report to the Full Commission DRAFT
Reactor and Fuel Cycle Technology Subcommittee Report to the Full Commission DRAFT
The Reactor and Fuel Cycle Technology Subcommittee was formed to respond to the charge—set forth in the charter of the Blue Ribbon Commission—to evaluate existing fuel cycle technologies and R&D programs in terms of multiple criteria.
Nuclear Waste Discussion Draft - FLO13341 - 113th Congress - 1st Session
Nuclear Waste Discussion Draft - FLO13341 - 113th Congress - 1st Session
To establish a new organization to manage nuclear waste, provide a consensual process for siting nuclear waste facilities, ensure adequate funding for managing nuclear waste, and for other purposes.
Managing Commercial High-Level Radioactive Waste
Managing Commercial High-Level Radioactive Waste
After more than 20 years of commercial nuclear power, the Federal Government has yet to develop a broadly supported policy for fulfilling its legal responsibility for the final isolation of high-level radioactive waste. OTA's study concludes that until such a policy is adopted in law, there is a substantial risk that the false starts, shifts of policy, and fluctuating support that have plagued the final isolation program in the past will continue.
Westinghouse MOX SNF Isotopic Source
Westinghouse MOX SNF Isotopic Source
The purpose of this calculation is to develop an estimate of the isotopic content as a function of time for mixed oxide (MOX) spent nuclear fuel (SNF) assemblies in a Westinghouse pressurized water reactor (PWR). These data will be used as source data for criticality, thermal, and radiation shielding evaluations of waste package (WP) designs for MOX assemblies in the Monitored Geologic Repository (MGR).
Preliminary Site Requirements and Considerations for a Monitored Retrievable Storage Facility
Preliminary Site Requirements and Considerations for a Monitored Retrievable Storage Facility
In the November 1989 Report to Congress on Reassessment of the Civilian
Radioactive Waste Management Program (DOE/RW-0247), the Secretary of Energy
announced an initiative for developing a monitored retrievable storage (MRS) facility
that is to start spent-fuel acceptance in 1998. This facility, which will be licensed by
the U.S. Nuclear Regulatory Commission (NRC), will receive spent fuel from
commercial nuclear power plants and provide a limited amount of storage for this
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
The "Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology" contains a summary of the analyses that compare SNF measured isotopic concentrations (radiochemical assays) to calculated SNF isotop~c concentrations (SAS2H module ·orScale4.3). The results of these analyses are used to support the validation of the isotopic models for spent commercial light water reactor (LWR) fuel.
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
This analysis is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having some or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment.
Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program
Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program
The success of the Civilian Radioactive Waste Management Program of the U.S.
Department of Energy (DOE) is critical to U.S. ability to manage and dispose of
nuclear waste safely--and to the reestablishment of confidence in the nuclear energy
option in the United States. The program must conform with all applicable standards
and, in fact, set the example for a national policy on the safe disposal of radioactive
waste.
The Secretary of Energy has recently completed an extensive review of the
Probabilistic External Criticality Evaluation (SCPB: N/A)
Probabilistic External Criticality Evaluation (SCPB: N/A)
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide a probabilistic evaluation of the potential for criticality of fissile material which has been transported from a geologic repository containing breached waste packages of commercial spent nuclear fuel (SNF). This analysis is part of a continuing investigation of the probability of criticality resulting from the emplacement of spent nuclear fuel in a geologic repository.
Letter to President Obama - Blue Ribbon Commission
Letter to President Obama - Blue Ribbon Commission
Dear Mr. President:
At your direction, the Secretary of Energy established the Blue Ribbon Commission on
America’s Nuclear Future to review policies for managing the back end of the nuclear
fuel cycle and recommend a new strategy. We are pleased to be serving as Co‐
Chairmen of the Commission, and we are writing to you to highlight an important action
we strongly believe should be reflected in your Fiscal Year 2013 baseline budget
projections.
In our draft report to the Secretary, issued in July of this year, the Commission
A Monitored Retrievable Storage Facility: Technical Background Information
A Monitored Retrievable Storage Facility: Technical Background Information
Dissolved Concentration Limits of Elements with Radioactive Isotopes
Dissolved Concentration Limits of Elements with Radioactive Isotopes
The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments.
Disposal Subcommittee Report to the Full Commission
Disposal Subcommittee Report to the Full Commission
The Disposal Subcommittee of the Blue Ribbon Commission on America’s Nuclear Future (BRC) addressed a wide-ranging set of issues, all bearing directly on the central question: “How can the United States go about establishing one or more disposal sites for high-level nuclear wastes in a manner and within a timeframe that is technically, socially, economically, and politically acceptable?”
Partnering for Long-Term Management of Radioactive Waste, Evolution and Current Practice in Thirteen Countries
Partnering for Long-Term Management of Radioactive Waste, Evolution and Current Practice in Thirteen Countries
The search for sites for radioactive waste management (RWM) facilities attracts attention from implementers, government bodies, local communities, and the public at large. Facility siting processes, in general, tend to be marred by conflicts, disagreements, and delays.
Initial Radionuclide Inventories
Initial Radionuclide Inventories
The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only.
Federal Policy for the Disposal of Highly Radioactive Wastes from Commercial Nuclear Power Plants
Federal Policy for the Disposal of Highly Radioactive Wastes from Commercial Nuclear Power Plants
How to dispose of highly radioactive wastes from commercial nuclear power plants is a question that has remained unresolved in the face rapidly changing technological, economic, and political requirements. In the three decades following WWII, two federal agencies -- the Atomic Energy Commission and the Energy Research and Development Administration -- tried unsuccessfully to develop a satisfactory plan for managing high level wastes.
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009
has further delayed the construction and operation of a permanent disposal facility for used fuel
and high level radioactive waste (HLW) in the United States. In concert with this decision, the
President directed the Energy Secretary to establish the Blue Ribbon Commission on America’s
Nuclear Future to review and provide recommendations on options for managing used fuel and
Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program, Report to the Congress by the Secretary of Energy
Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program, Report to the Congress by the Secretary of Energy
The success of the Civilian Radioactive Waste Management Program of the U.S.
Department of Energy (DOE) is critical to U.S. ability to manage and dispose of
nuclear waste safely--and to the reestablishment of confidence in the nuclear energy
option in the United States. The program must conform with all applicable standards
and, in fact, set the example for a national policy on the safe disposal of radioactive
waste.
The Secretary of Energy has recently completed an extensive review of the
Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition (NUREG-75/087)
Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition (NUREG-75/087)
The Standard Review Plan (SRP) is prepared for the guidance of staff reviewers in the Office of Nuclear Reactor Regulation in performing safety reviews of applications to construct or operate nuclear power plants. The principal purpose of the SRP is to assure the quality and uniformity of staff reviews, and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews.
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
This guidance manual provides the NRC staff methodology for calculating parameters for limiting conditions of operation required in the radiological effluent Technical Specifications for light-water-cooled nuclear power plants. it provides guidance in using the model specifications reported in NUREG-0472 (Revision 1)*, and NUREG-0473 (Revision 1)*, applicable to operating PWR and BWR licensees, and users of the Standard Technical Specifications packages available for various vendor designs.
Recommendations for PWR Storage and Transportation Casks That Use Burnup Credit
Recommendations for PWR Storage and Transportation Casks That Use Burnup Credit
Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation
Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation
The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases.