Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
Monitored Retrievable Storage Facility Design Criteria Policy Document - 2nd Draft
Monitored Retrievable Storage Facility Design Criteria Policy Document - 2nd Draft
Characteristics of Spent Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation, Rev. 0
Characteristics of Spent Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation, Rev. 0
The purpose of this report, and the information contained in the associated computerized data bases, is to establish the DOE/OCRWM reference characteristics of the radioactive waste materials that may be accepted by DOE for emplacement in the mined geologic disposal system as developed under the Nuclear Waste Policy Act of 1982. This report provides relevant technical data for use by DOE and its supporting contractors and is not intended to be a policy document.
Characteristics of Potential Repository Wastes
Characteristics of Potential Repository Wastes
The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for all spent fuels and high-level wastes (HLW) that will eventually be disposed of in a geologic repository. The purpose of this document, and the information contained in the associated computerized data bases and supporting technical reports, is to provide the technical characteristics of the radioactive waste materials that will (or may) be accepted by DOE for interim storage in an MRS or emplacement in a repository as developed under the Nuclear Waste Policy Act Amendment of 1987.
Spent Fuel Project Office, ISG-8 - Limited Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, ISG-8 - Limited Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office Interim Staff Guidance - 8
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1
Report on Radioactive Waste Ownership and Management of Long-Term Liabilities in EDRAM Member Countries
Report on Radioactive Waste Ownership and Management of Long-Term Liabilities in EDRAM Member Countries
This report has been prepared by an ad-hoc Working Group (WG) formed by ANDRA (France), NUMO (Japan), NAGRA (Switzerland) and ENRESA (Spain) in May 2003, after the EDRAM meeting held in Valencia to study the situation in the different EDRAM member countries regarding the treatment of radioactive waste ownership and management of long-term liabilities.
A Multiattribute Utility Analysis of Sites Nominated for Characterization for the First Radioactive-Waste Repository--A Decision-Aiding Methodology
A Multiattribute Utility Analysis of Sites Nominated for Characterization for the First Radioactive-Waste Repository--A Decision-Aiding Methodology
The Department of Energy (DOE), pursuant to the Atomic Energy Act of 1954
as amended, the Energy Reorganization Act of 1974, the Department of Energy
Organization Act of 1977, and the Nuclear Waste Policy Act of 1982 (the Act),
has the responsibility to provide for the disposal of high-level radioactive
waste and spent nuclear fuel.* The DOE selected mined geologic repositories
as the preferred means for the disposal of commercially generated high-level
radioactive waste and spent fuel (Federal Register, Vol. 46, p. 26677, May 14,
Reversibility and Retrievability in Planning for Geological Disposal of Radioactive Waste-Proceedings of the "R&R" International Conference and Dialogue, December 14-17, 2010, Reims, France
Reversibility and Retrievability in Planning for Geological Disposal of Radioactive Waste-Proceedings of the "R&R" International Conference and Dialogue, December 14-17, 2010, Reims, France
In 2007 the OECD Nuclear Energy Agency (NEA) Radioactive Waste Management Committee
(RWMC) launched a four-year project on the topics of reversibility and retrievability in geological
disposal. The goal of the project studies and activities (www.oecd-nea.org/rwm/rr) was to
acknowledge the range of approaches to reversibility and retrievability (R&R), rather than to
recommend a specific approach, and to provide a basis for reflection rather than to lead towards
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
The purpose of this document is to provide the requirements rationale for the current version of the Preliminary Transportation, Aging and Disposal Canister System Performance Specification; WMO-TADCS-000001.
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2 - Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport
and Storage Casks
Used Fuel Disposition U.S. Radioactive Waste Inventory and Characteristics Related to Potential Future Nuclear Energy Systems
Used Fuel Disposition U.S. Radioactive Waste Inventory and Characteristics Related to Potential Future Nuclear Energy Systems
In February, 2011 the Blue Ribbon Commission (BRC) on America’s Nuclear Future requested the Department of Energy
(DOE) to provide a white paper summarizing the quantities and characteristics of potential waste generated by various
nuclear fuel cycles. The BRC request expressed interest in two classes of radioactive wastes:
Existing waste that are or might be destined for a civilian deep geologic repository or equivalent.
Potential future waste, generated by alternative nuclear fuel cycles (e.g. wastes from reprocessing, mixed-oxide
Stakeholder Confidence in Radioactive Waste Management: An Annotated Glossary of Key Terms
Stakeholder Confidence in Radioactive Waste Management: An Annotated Glossary of Key Terms
The OECD Nuclear Energy Agency (NEA) Forum on Stakeholder Confidence (FSC) acts as a centre for informed exchange of knowledge and experience regarding stakeholder interaction and public participation in radioactive waste management. It promotes an open discussion among members and stakeholders, across institutional boundaries, and between technical and non-technical actors, in an atmosphere of trust and mutual respect. As such, the FSC is, first and foremost, a learning organisation.
Options for Management of Spent Fuel and Radioactive Waste for Countries Developing New Nuclear Power Programmes
Options for Management of Spent Fuel and Radioactive Waste for Countries Developing New Nuclear Power Programmes
The IAEA has published guidance on particular elements of radioactive waste and spent fuel management,
such as establishing nuclear technical and regulatory infrastructure, relevant financing schemes, national policy
and strategies, multinational approaches and other aspects linked to building nuclear power plants. The present
publication is intended to provide a concise summary of key issues related to the development of a sound radioactive
waste and spent nuclear fuel management system. It is designed to brief countries with small or newly established
Environmental Impact Statement, Management of Commercially Generated Radioactive Waste. Volume 1
Environmental Impact Statement, Management of Commercially Generated Radioactive Waste. Volume 1
In the course of producing electrical power in light water reactors (LWRs), the uranium
fuel accumulates fission products until the fission process is no longer efficient.for power
production. At that point the fuel is removed from the reactor and stored in water basins
to allow radioactivity to partially decay before further disposition. This fuel is referred
to as "spent fuel." Although spent fuel as it is discharged from a reactor is intensely
radioactive, it has been stored safely in moderate quantities for decades. Spent fuel could
NRC SFST ISG-2: Fuel Retrievability
NRC SFST ISG-2: Fuel Retrievability
This Interim Staff Guidance (ISG) provides guidance to the staff for determining if
storage systems to be licensed under 10 CFR Part 72 allow ready retrieval of spent fuel.
This guidance is not a regulation or a requirement.
NRC ISG-1: Classifying the Condition of Spent Nuclear Fuel for Interim Storage and Transportation Based on Function
NRC ISG-1: Classifying the Condition of Spent Nuclear Fuel for Interim Storage and Transportation Based on Function
This Interim Staff Guidance (ISG) provides guidance to the staff on classifying spent nuclear
fuel as either (1) damaged, (2) undamaged, or (3) intact, before interim storage or
transportation. This is not a regulation or requirement and can be modified or superseded by
an applicant with supportable technical arguments.
Revision 2
NRC SFST ISG-4: Cask Closure Weld Inspections
NRC SFST ISG-4: Cask Closure Weld Inspections
The closure weld for the outer cover plate for austenitic stainless steel designs may be
inspected using either volumetric or multiple pass dye penetrant techniques subject to the
following conditions:
• Dye penetrant (PT) examination may only be used in lieu of volumetric
examination only on austenitic stainless steels. PT examination should be done
in accordance with ASME Section V, Article 6, “Liquid Penetrant Examination.”
• For either ultrasonic examination (UT) or PT examination, the minimum
NRC SFST ISG-5: Confinement Evaluation
NRC SFST ISG-5: Confinement Evaluation
Several changes have occurred since the issuance of NUREG-1536, “Standard Review Plan
(SRP) for Dry Cask Storage Systems,” that affect the staff’s approach to confinement
evaluation. The attachment to this ISG integrates the current staff approach into a revision of
ISG-5. The highlights of the changes include:
• Reflects October 1998 revisions to 10 CFR 72.104 and 10 CFR 72.106.
• Expands and clarifies acceptance criteria associated with confinement analysis and
acceptance of “leak tight” testing instead of detailed confinement analysis.
NRC SFST ISG-6: Establishing minimum initial enrichment for the bounding design basis fuel assembly(s)
NRC SFST ISG-6: Establishing minimum initial enrichment for the bounding design basis fuel assembly(s)
The Standard Review Plan, NUREG-1536, Chapter 5, Section V, 2 recommends that “the
applicant calculate the source term on the basis of the fuel that will actually provide the
bounding source term,” and states that the applicant should, “either specify the minimum initial
enrichment or establish the specific source terms as operating controls and limits for cask use.”
A specified source term is difficult for most cask users to determine and for inspectors to verify.
NRC SFST ISG-7: Potential Generic Issue Concerning Cask Heat Transfer in a Transportation Accident
NRC SFST ISG-7: Potential Generic Issue Concerning Cask Heat Transfer in a Transportation Accident
Staff raised two major issues concerning the adverse effects of fission gases to the gas-mixture
thermal conductivity in a spent fuel canister in a post accident environment. The two major
concerns were: (1) the reduction of the thermal conductivity of the canister gas by the mixing of
fission gases expelled from failed fuel pins and (2) the resultant temperature and pressure rise
within the canister. Since the fission gas is typically of a lower conductivity than the cover gas,
NRC SFST ISG-8: Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks
NRC SFST ISG-8: Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks
Title 10 of the Code of Federal Regulations (10 CFR) Part 71, Packaging and Transportation of
Radioactive Material, and 10 CFR Part 72, Licensing Requirements for the Independent
Storage of Spent Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater
Than Class C Waste, require that spent nuclear fuel (SNF) remain subcritical in transportation
and storage, respectively. Unirradiated reactor fuel has a well-specified nuclide composition
that provides a straightforward and bounding approach to the criticality safety analysis of
NRC SFST ISG-9: Storage of Components Associated with Fuel Assemblies
NRC SFST ISG-9: Storage of Components Associated with Fuel Assemblies
The purpose of this ISG is to clarify the technical criteria for types of materials that will be |
considered associated with the storage of spent fuel assemblies. While control rods are |
mentioned in the Standard Review Plan as possible contents, specific information and guidance
is lacking.
Revision 1
NRC SFST ISG-10: Alternatives to the ASME Code
NRC SFST ISG-10: Alternatives to the ASME Code
There is no existing American Society of Mechanical Engineers (ASME) Code for the design
and fabrication of spent fuel dry storage casks. Therefore, ASME Code Section III, is
referenced by NUREG-1536, “Standard Review Plan for Dry Cask Storage Systems,” as an
acceptable standard for the design and fabrication of dry storage casks. However, since dry
storage casks are not pressure vessels, ASME Code Section III, cannot be implemented
without allowing some alternatives to its requirements.
Revision 1
NRC SFST ISG-11: Cladding Considerations for the Transportation and Storage of Spent Fuel
NRC SFST ISG-11: Cladding Considerations for the Transportation and Storage of Spent Fuel
The staff has broadened the technical basis for the storage of spent fuel including assemblies
with average burnups exceeding 45 GWd/MTU. This revision to Interim Staff Guidance No. 11
(ISG-11) addresses the technical review aspects of and specifies the acceptance criteria for
limiting spent fuel reconfiguration in storage casks. It modifies the previous revision of the ISG
in three ways: (1) by clarifying the meaning of some of the acceptance criteria contained in