Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Reactor and Fuel Cycle Technology Subcommittee Report to the Full Commission DRAFT
Reactor and Fuel Cycle Technology Subcommittee Report to the Full Commission DRAFT
The Reactor and Fuel Cycle Technology Subcommittee was formed to respond to the charge—set forth in the charter of the Blue Ribbon Commission—to evaluate existing fuel cycle technologies and R&D programs in terms of multiple criteria.
Probabilistic External Criticality Evaluation (SCPB: N/A)
Probabilistic External Criticality Evaluation (SCPB: N/A)
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide a probabilistic evaluation of the potential for criticality of fissile material which has been transported from a geologic repository containing breached waste packages of commercial spent nuclear fuel (SNF). This analysis is part of a continuing investigation of the probability of criticality resulting from the emplacement of spent nuclear fuel in a geologic repository.
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
This report describes the actions taken in Argentina on the safety of spent fuel management
(SF) and on the safety of radioactive waste management, in order to provide evidence of the
fulfillment of its obligations under the Joint Convention. To facilitate the reading and a better
understanding of this report a summary of those parts of the 1st Report that were considered
necessary have been included.
Management of Uncertainty in Safety Cases and the Role of Risk - Workshop Proceedings
Management of Uncertainty in Safety Cases and the Role of Risk - Workshop Proceedings
The development of radioactive waste repositories involves consideration of how the waste and the
engineered barrier systems will evolve, as well as the interactions between these and, often relatively
complex, natural systems. The timescales that must be considered are much longer than the timescales
that can be studied in the laboratory or during site characterisation. These and other factors can lead to
various types of uncertainty (on scenarios, models and parameters) in the assessment of long-term,
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT FOURTH NATIONAL REPORT Argentina
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT FOURTH NATIONAL REPORT Argentina
The structure of the Fourth National Report complies with the Guidelines Regarding the
Form and Structure of National Reports (INFCIRC/604/Rev.1).
Section A describes the scope of the nuclear activity developed in Argentina since 1950
as well as the legal and regulatory framework. It also makes reference to the Strategic
Plan for Radioactive Waste Management (Strategic Plan), which refers to the safety of
Spent Fuel Management and Radioactive Waste Management.
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Safety and Security of Commercial Spent Nuclear Fuel Storage: Public Report - Summary
Safety and Security of Commercial Spent Nuclear Fuel Storage: Public Report - Summary
At the request of the U.S. Congress, the National Academies assessed the safety and
security of spent nuclear fuel stored in pools and dry casks at commercial nuclear power
plants in the United States. The public report can be viewed on the National Academies
Press website at http://books.nap.edu/catalog/11263.html.
Geochemistry Model Validation Report: External Accumulation Model
Geochemistry Model Validation Report: External Accumulation Model
The purpose of this report is to document and validate the external accumulation model that predicts accumulation of fissile materials in the invert, fractures and lithophysae in the rock beneath a degrading waste package containing spent nuclear fuel (SNF) in the monitored geologic repository at Yucca Mountain. (Lithophysae are hollow, bubblelike structures in the rock composed of concentric shells of finely crystalline alkali feldspar, quartz, and other materials (Bates and Jackson 1984 [DIRS 128109], p.
From Three Mile Island to the Future Improving Worker Safety and Health In the U.S. Nuclear Power Industry
From Three Mile Island to the Future Improving Worker Safety and Health In the U.S. Nuclear Power Industry
The Blue Ribbon Commission on America’s Nuclear Future (BRC) asked us to study whether
occupational safety and health conditions in today's U.S. nuclear industry are reasonably safe,
and if those conditions have improved since the Three Mile Island event in 1979. The BRC also
asked us to look to the future, to try to anticipate worker safety and health risks that should be
addressed by the industry, its government regulators and private watchdogs.
Over the eight weeks allotted, we performed a limited review of the literature and spoke with
EQ6 Calculations for Chemical Degradation of Pu-Ceramic Waste Packages
EQ6 Calculations for Chemical Degradation of Pu-Ceramic Waste Packages
In this study, the long-term geochemical behavior of waste package (WP), containing Pu-ceramic, was modeled. The ceramic under consideration contains Ti, U, Pu, Gd and Hf in a pyrochlore structure; the Gd and Hf stabilize the mineral structure, but are also intended to provide criticality control. The specific study objectives were to determine:
1) the extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial package configuration (such that it can be effective in preventing criticality), and
Analysis of Critical Benchmark Experiments for Configurations External to WP
Analysis of Critical Benchmark Experiments for Configurations External to WP
The Disposal Criticality Analysis Methodology Topical Report (Reference 1) states that the accuracy of the criticality analysis methodology (MCNP Monte Carlo code and cross-section data) designated to assess the potential for criticality of various configurations in the Yucca Mountain proposed repository is established by evaluating appropriately selected benchmark critical experiments.
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
This study is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probablility of criticality in the far- field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses.
Reactor and Fuel Cycle Technology Subcommittee Report to the Full Commission Updated Report
Reactor and Fuel Cycle Technology Subcommittee Report to the Full Commission Updated Report
The Reactor and Fuel Cycle Technology Subcommittee was formed to respond to the charge—set forth in the charter of the BRC—to evaluate existing fuel cycle technologies and R&D programs in terms of multiple criteria.
Canister Handling Facility Criticality Safety Calculations
Canister Handling Facility Criticality Safety Calculations
This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC (Bechtel SAIC Company) 2004 (DIRS 167614).
Project Opalinus Clay Safety Report: Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis)
Project Opalinus Clay Safety Report: Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis)
This report presents a comprehensive description of the post-closure radiological safety assess- ment of a repository for spent fuel (SF), vitrified high-level waste (HLW) from the reprocessing of spent fuel and long-lived intermediate-level waste (ILW), sited in the Opalinus Clay of the Zürcher Weinland in northern Switzerland. This assessment has been carried out as part of the technical basis for Project Entsorgungsnachweis1, which also includes a synthesis of informa- tion from geological investigations of the Opalinus Clay and a report on engineering feasibility.
Report On External Criticality of Plutonium Waste Forms In A Geologic Repository
Report On External Criticality of Plutonium Waste Forms In A Geologic Repository
This report presents the analyses and results for the potential occurrence of external criticality events which could result from plutonium waste forms emplaced in a geologic repository similar to the one being developed at Yucca Mountain. The analyses evaluate both the MOX spent fuel and the immobilized plutonium waste forms in a repository if the waste package has degraded and if the fissile material has migrated to the invert and out into the far-field.
Centralized InterimStorage Facility Topical Safety Report
Centralized InterimStorage Facility Topical Safety Report
The Centralized Interim Storage Facility (CISF) is designed as a temporary, above-ground away-from-reactor spent fuel storage installation for up to 40,000 metric tons of uranium (MTU). The design is non-site-specific but incorporates conservative environmental and design factors (e.g., 360 mph tornado and 0.75 g seismic loading) intended to be capable of bounding subsequent site-specific factors. Spent fuel is received in dual-purpose canister systems and/or casks already approved for transportation and storage by the Nuclear Regulatory Commission (NRC).
Safety Evaluation of a Geological Repository
Safety Evaluation of a Geological Repository
The Law of 30 December 1991 [1] confers to Andra the mission of assessing the feasibility of a repository of high-level and long-lived (HLLL) waste in a deep geological formation.
ASSESSMENT OF THE GENERIC DISPOSAL SYSTEM SAFETY CASE for Information
ASSESSMENT OF THE GENERIC DISPOSAL SYSTEM SAFETY CASE for Information
The Committee on Radioactive Waste Management (CoRWM) has carried out an assessment of the generic Disposal System Safety Case (gDSSC) published by the Radioactive Waste Management Directorate (RWMD) of the Nuclear Decommissioning Authority (NDA) in February 2011. The assessment covered the whole suite of gDSSC documents, and related RWMD reports on research and development (R&D) and site characterisation.
Safety Case Plan
Safety Case Plan
Following the guidelines set forth by the Ministry of Trade and Industry (now Ministry of Employment and Economy) Posiva is preparing to submit the construction license application for a spent fuel repository by the end of the year 2012. The long-term safety section supporting the license application is based on a safety case, which, according to the internationally adopted definition, is a compilation of the evidence, analyses and arguments that quantify and substantiate the safety and the level of expert confidence in the safety of the planned repository.
Geological Disposal of Radioactive Waste in Japan
Geological Disposal of Radioactive Waste in Japan
Treatment and final disposal of nuclear waste Detailed R&D-Programme 1993–1998
Treatment and final disposal of nuclear waste Detailed R&D-Programme 1993–1998
The goal of radioactive waste management in Sweden is to dispose of all radioactive waste products generated at the Swedish nuclear power plants in a safe manner. Furthermore, all other radioactive waste that arises in Sweden shall be safely disposed of.<br/>The Act on Nuclear Activities requires that the owners of the Swedish nuclear power plants adopt the measures that are needed to achieve this goal. The owners of the Swedish nuclear power plants have commissioned the Swedish Nuclear Fuel and Waste Management Company (SKB) to implement the measures that are needed.<br/>
Detailed programme for research and development 1999–2004
Detailed programme for research and development 1999–2004
This report is a background to RD&D-Programme 98 /1-11. The report gives an account of most of the research and development being conducted by SKB. The current state of knowledge is described, along with the goals and programmes that govern the continued work. The period of immediate concern comprises the next three years, 1999-2001. Particulars for the three years following that are for natural reasons less detailed and mainly indicate a direction.