Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Reactor and Fuel Cycle Technology Subcommittee Report to the Full Commission DRAFT
Reactor and Fuel Cycle Technology Subcommittee Report to the Full Commission DRAFT
The Reactor and Fuel Cycle Technology Subcommittee was formed to respond to the charge—set forth in the charter of the Blue Ribbon Commission—to evaluate existing fuel cycle technologies and R&D programs in terms of multiple criteria.
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
Taking credit for the reduced reactivity of spent nuclear fuel in criticality analyses is referred to
as burnup credit. Criticality safety evaluations employing burnup credit require validation of the
depletion and criticality calculation methods and computer codes with available measurement
data. To address the issues of burnup credit criticality validation, the U.S. Nuclear Regulatory
Commission initiated a project with Oak Ridge National Laboratory to (1) develop and establish
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
This guidance manual provides the NRC staff methodology for calculating parameters for limiting conditions of operation required in the radiological effluent Technical Specifications for light-water-cooled nuclear power plants. it provides guidance in using the model specifications reported in NUREG-0472 (Revision 1)*, and NUREG-0473 (Revision 1)*, applicable to operating PWR and BWR licensees, and users of the Standard Technical Specifications packages available for various vendor designs.
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
This report describes the actions taken in Argentina on the safety of spent fuel management
(SF) and on the safety of radioactive waste management, in order to provide evidence of the
fulfillment of its obligations under the Joint Convention. To facilitate the reading and a better
understanding of this report a summary of those parts of the 1st Report that were considered
necessary have been included.
Management of Uncertainty in Safety Cases and the Role of Risk - Workshop Proceedings
Management of Uncertainty in Safety Cases and the Role of Risk - Workshop Proceedings
The development of radioactive waste repositories involves consideration of how the waste and the
engineered barrier systems will evolve, as well as the interactions between these and, often relatively
complex, natural systems. The timescales that must be considered are much longer than the timescales
that can be studied in the laboratory or during site characterisation. These and other factors can lead to
various types of uncertainty (on scenarios, models and parameters) in the assessment of long-term,
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT FOURTH NATIONAL REPORT Argentina
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT FOURTH NATIONAL REPORT Argentina
The structure of the Fourth National Report complies with the Guidelines Regarding the
Form and Structure of National Reports (INFCIRC/604/Rev.1).
Section A describes the scope of the nuclear activity developed in Argentina since 1950
as well as the legal and regulatory framework. It also makes reference to the Strategic
Plan for Radioactive Waste Management (Strategic Plan), which refers to the safety of
Spent Fuel Management and Radioactive Waste Management.
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Partnering for Long-term Management of Radioactive Waste-Evolution and Current Practice in Thirteen Countries
Partnering for Long-term Management of Radioactive Waste-Evolution and Current Practice in Thirteen Countries
Safety and Security of Commercial Spent Nuclear Fuel Storage: Public Report - Summary
Safety and Security of Commercial Spent Nuclear Fuel Storage: Public Report - Summary
At the request of the U.S. Congress, the National Academies assessed the safety and
security of spent nuclear fuel stored in pools and dry casks at commercial nuclear power
plants in the United States. The public report can be viewed on the National Academies
Press website at http://books.nap.edu/catalog/11263.html.
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
The purpose of this document is to provide the requirements rationale for the current version of the Preliminary Transportation, Aging and Disposal Canister System Performance Specification; WMO-TADCS-000001.
From Three Mile Island to the Future Improving Worker Safety and Health In the U.S. Nuclear Power Industry
From Three Mile Island to the Future Improving Worker Safety and Health In the U.S. Nuclear Power Industry
The Blue Ribbon Commission on America’s Nuclear Future (BRC) asked us to study whether
occupational safety and health conditions in today's U.S. nuclear industry are reasonably safe,
and if those conditions have improved since the Three Mile Island event in 1979. The BRC also
asked us to look to the future, to try to anticipate worker safety and health risks that should be
addressed by the industry, its government regulators and private watchdogs.
Over the eight weeks allotted, we performed a limited review of the literature and spoke with
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
Reactor and Fuel Cycle Technology Subcommittee Report to the Full Commission Updated Report
Reactor and Fuel Cycle Technology Subcommittee Report to the Full Commission Updated Report
The Reactor and Fuel Cycle Technology Subcommittee was formed to respond to the charge—set forth in the charter of the BRC—to evaluate existing fuel cycle technologies and R&D programs in terms of multiple criteria.
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Spent fuel transportation and storage cask designs based on a burnup credit approach must
consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For
example, the spent fuel composition must be adequately characterized and the criticality analysis
model can be complicated by the need to consider axial burnup variations. Parametric analyses are
needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel
Canister Handling Facility Criticality Safety Calculations
Canister Handling Facility Criticality Safety Calculations
This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC (Bechtel SAIC Company) 2004 (DIRS 167614).
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
Project Opalinus Clay Safety Report: Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis)
Project Opalinus Clay Safety Report: Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis)
This report presents a comprehensive description of the post-closure radiological safety assess- ment of a repository for spent fuel (SF), vitrified high-level waste (HLW) from the reprocessing of spent fuel and long-lived intermediate-level waste (ILW), sited in the Opalinus Clay of the Zürcher Weinland in northern Switzerland. This assessment has been carried out as part of the technical basis for Project Entsorgungsnachweis1, which also includes a synthesis of informa- tion from geological investigations of the Opalinus Clay and a report on engineering feasibility.
Centralized InterimStorage Facility Topical Safety Report
Centralized InterimStorage Facility Topical Safety Report
The Centralized Interim Storage Facility (CISF) is designed as a temporary, above-ground away-from-reactor spent fuel storage installation for up to 40,000 metric tons of uranium (MTU). The design is non-site-specific but incorporates conservative environmental and design factors (e.g., 360 mph tornado and 0.75 g seismic loading) intended to be capable of bounding subsequent site-specific factors. Spent fuel is received in dual-purpose canister systems and/or casks already approved for transportation and storage by the Nuclear Regulatory Commission (NRC).
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
Safety Evaluation of a Geological Repository
Safety Evaluation of a Geological Repository
The Law of 30 December 1991 [1] confers to Andra the mission of assessing the feasibility of a repository of high-level and long-lived (HLLL) waste in a deep geological formation.
Emergence of Collective Action and Environmental Networking in Relation to Radioactive Waste Management
Emergence of Collective Action and Environmental Networking in Relation to Radioactive Waste Management
This paper explores the relationship between the national environmental movement and nuclear technology in relation to a local emergent group. The historical development of nuclear technology in this country has followed a path leading to continued fear and mistrust of waste management by a portion of the population. At the forefront of opposition to nuclear technology are people and groups endorsing environmental values.