Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Nuclear Waste Discussion Draft - FLO13341 - 113th Congress - 1st Session
Nuclear Waste Discussion Draft - FLO13341 - 113th Congress - 1st Session
To establish a new organization to manage nuclear waste, provide a consensual process for siting nuclear waste facilities, ensure adequate funding for managing nuclear waste, and for other purposes.
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
Taking credit for the reduced reactivity of spent nuclear fuel in criticality analyses is referred to
as burnup credit. Criticality safety evaluations employing burnup credit require validation of the
depletion and criticality calculation methods and computer codes with available measurement
data. To address the issues of burnup credit criticality validation, the U.S. Nuclear Regulatory
Commission initiated a project with Oak Ridge National Laboratory to (1) develop and establish
Nuclear Waste Policy Act (Section 112) - Environmental Assessment, Yucca Mountain Site, Nevada Research and Development Area, Nevada, Volume 1
Nuclear Waste Policy Act (Section 112) - Environmental Assessment, Yucca Mountain Site, Nevada Research and Development Area, Nevada, Volume 1
By the end of this century, the United States plans to begin operating the first geologic repository for the permanent disposal of commercial spent nuclear fuel and high-level radioactive Waste. Public Law 97-425, the Nuclear waste Policy Act of 1982 (the Act), specifies the process for selecting a repository site, and constructing, operating, closing, and decommissioning the repository.
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Nuclear Waste: Is There a Need for Federal Interim Storage--Executive Summary--Report of the Monitored Retrievable Storage Commission
Nuclear Waste: Is There a Need for Federal Interim Storage--Executive Summary--Report of the Monitored Retrievable Storage Commission
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Supplementary Report Background of Geologic Disposal
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Supplementary Report Background of Geologic Disposal
Radioactive waste is produced from a wide range of human activities. The wastes arising from the nuclear fuel cycle occur as a wide range of materials and in many different physical and chemical forms, contaminated with varying activities of radionuclides. Their common feature is the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The safe disposal of radioactive waste is a key reequirement of the nuclear industry worldwide.
Helping a Community Control its Future: Potential Negotiating Packages and Benefits for an MRS Host
Helping a Community Control its Future: Potential Negotiating Packages and Benefits for an MRS Host
The voluntary siting process for the Monitored Retrievable Storage (MRS) facility set forth in the Nuclear Waste Policy Amendments Act (NWPAA) of 1987 provides a potential host community a unique opportunity to improve its present situation and to gain greater control over its future.
Nuclear Waste: Is There a Need for Federal Interim Storage? Report of the Monitored Retrievable Storage Review Commission
Nuclear Waste: Is There a Need for Federal Interim Storage? Report of the Monitored Retrievable Storage Review Commission
Summary of the Nuclear Waste Administration Act of 2013 Discussion Draft
Summary of the Nuclear Waste Administration Act of 2013 Discussion Draft
The Nuclear Waste Administration Act of 2013 discussion draft is intended to implement the recommendations of the Blue Ribbon Commission on America’s Nuclear Future to establish a nuclear waste administration and create a consent-based process for siting nuclear waste facilities. The bill enables the federal government to fulfill its commitment to managing nuclear waste, ending the costly liability the government bears for its failure to dispose of commercial spent fuel.
Nuclear Waste Bill to Implement the Blue Ribbon Commission's Recommendations Section-by-Section Summary of Discussion Draft - April 2013
Nuclear Waste Bill to Implement the Blue Ribbon Commission's Recommendations Section-by-Section Summary of Discussion Draft - April 2013
In General: The Nuclear Waste Administration Act of 2013 includes most of the language of S.3469, the Nuclear Waste Administration Act of 2012. The most significant change in the 2013 bill is the provision linking construction and siting of a consolidated storage facility to progress on a repository. The 2012 Act prohibited storage of any spent nuclear fuel beyond 10,000 metric tons until the Administration concluded a repository consent agreement.
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Spent fuel transportation and storage cask designs based on a burnup credit approach must
consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For
example, the spent fuel composition must be adequately characterized and the criticality analysis
model can be complicated by the need to consider axial burnup variations. Parametric analyses are
needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
Used Fuel Disposition U.S. Radioactive Waste Inventory and Characteristics Related to Potential Future Nuclear Energy Systems
Used Fuel Disposition U.S. Radioactive Waste Inventory and Characteristics Related to Potential Future Nuclear Energy Systems
In February, 2011 the Blue Ribbon Commission (BRC) on America’s Nuclear Future requested the Department of Energy
(DOE) to provide a white paper summarizing the quantities and characteristics of potential waste generated by various
nuclear fuel cycles. The BRC request expressed interest in two classes of radioactive wastes:
Existing waste that are or might be destined for a civilian deep geologic repository or equivalent.
Potential future waste, generated by alternative nuclear fuel cycles (e.g. wastes from reprocessing, mixed-oxide
Helping a Community Control its Future: Potential Negotiating Packages and Benefits for an MRS Host
Helping a Community Control its Future: Potential Negotiating Packages and Benefits for an MRS Host
The voluntary siting process for the Monitored Retrievable Storage (MRS) facility set forth in the Nuclear Waste Policy Amendments Act (NWPAA) of 1987 provides a potential host community a unique opportunity to improve its present situation and to gain greater control over its future.
Civilian Nuclear Waste Disposal
Civilian Nuclear Waste Disposal
The Congressional Research Service prepared a report in August titled "Civilian Nuclear Waste Disposal." It contains a summary of the radioactive waste management program, and includes an update with recent developments on YM licensing, consent based siting, legislation, volunteer private storage sites, and current policy.
NEI Response and Comments on Nuclear Waste Administration Act of 2013 Draft
NEI Response and Comments on Nuclear Waste Administration Act of 2013 Draft
The Nuclear Energy Institute, on behalf of the nuclear energy industry, is pleased to provide comments on the discussion draft of the Nuclear Waste Administration Act of 2013 and the associated documents that were released on April 25.
Managing Nuclear Waste-A Better Idea, A Report to the U.S. Secretary of Energy
Managing Nuclear Waste-A Better Idea, A Report to the U.S. Secretary of Energy
When Congress passed the Nuclear Waste Policy Act of 1982, it created the
Office of Civilian Radioactive Waste Management within the Department of
Energy to spearhead the implementation of this landmark legislation.
In Section 303 of the Act, however, Congress directed the Secretary of Energy
to study alternative approaches to managing the radioactive waste program, as
follows:
ALTERNATIVE MEANS OF FINANCING
SEC. 303. The Secretary shall undertake a study with respect to
ANDRA The french national radioactive waste management agency
ANDRA The french national radioactive waste management agency
Waste management operation began in France in 1969. Created in 1979 as an agency within the CEA, ANDRA was established by the December 1991 Waste Act as an independent public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministries in charge of Energy, Ecology, and Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act (www.andra.fr).
MAKING CONSULTATION AND CONCURRENCE WORK
MAKING CONSULTATION AND CONCURRENCE WORK
Safe Management of Nuclear Waste and Used Nuclear Fuel
Safe Management of Nuclear Waste and Used Nuclear Fuel
Environmental Views on the Geologic Disposal of Nuclear Materials
Environmental Views on the Geologic Disposal of Nuclear Materials
Presented at the International Conference on Geologic Repositories, Denver, CO, November 1, 1999
Nuclear Waste - Funds Spent to Identify a Monitored Retrievable Storage Facility Site
Nuclear Waste - Funds Spent to Identify a Monitored Retrievable Storage Facility Site
The Nuclear Waste Policy Amendments Act of 1987 established the federal<br/>Office of the Nuclear Waste Negotiator for a 5-year period. The Nuclear<br/>Waste Negotiator, appointed by the President and confirmed by the<br/>Senate, was empowered to attempt to find a state or Indian tribe willing<br/>to host a repository or a monitored retrievable storage (MB) facility for the<br/>permanent or temporary storage of nuclear waste, respectively.