Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
Radiolytic Specie Generation from Internal Waste Package Criticality
Radiolytic Specie Generation from Internal Waste Package Criticality
Supplement to the Disposal Criticality Analysis Methodology
Supplement to the Disposal Criticality Analysis Methodology
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
FEDERAL COMMITMENTS REGARDING USED FUEL AND HIGH-LEVEL WASTES
FEDERAL COMMITMENTS REGARDING USED FUEL AND HIGH-LEVEL WASTES
EQ6 Calculation for Chemical Degradation of Pu-Ceramic Waste Packages: Effects of Updated Materials Composition and Rates
EQ6 Calculation for Chemical Degradation of Pu-Ceramic Waste Packages: Effects of Updated Materials Composition and Rates
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of Pu-ceramic waste forms. The Pu- ceramic (Refs. 1 and 2) is designed to immobilize excess plutonium from weapons production, and has been considered for disposal at the potential Yucca Mountain site.
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA
This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.
Managing Commercial High-Level Radioactive Waste
Managing Commercial High-Level Radioactive Waste
After more than 20 years of commercial nuclear power, the Federal Government has yet to develop a broadly supported policy for fulfilling its legal responsibility for the final isolation of high-level radioactive waste. OTA's study concludes that until such a policy is adopted in law, there is a substantial risk that the false starts, shifts of policy, and fluctuating support that have plagued the final isolation program in the past will continue.
Characteristics of Spent Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation, Rev. 0
Characteristics of Spent Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation, Rev. 0
The purpose of this report, and the information contained in the associated computerized data bases, is to establish the DOE/OCRWM reference characteristics of the radioactive waste materials that may be accepted by DOE for emplacement in the mined geologic disposal system as developed under the Nuclear Waste Policy Act of 1982. This report provides relevant technical data for use by DOE and its supporting contractors and is not intended to be a policy document.
Initial Waste Package Probabilistic Criticality Analysis: Multi-Purpose Canister With Disposal Container (TBV)
Initial Waste Package Probabilistic Criticality Analysis: Multi-Purpose Canister With Disposal Container (TBV)
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to:
1. Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts;
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
This analysis is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having some or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment.
Characteristics of Potential Repository Wastes
Characteristics of Potential Repository Wastes
The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for all spent fuels and high-level wastes (HLW) that will eventually be disposed of in a geologic repository. The purpose of this document, and the information contained in the associated computerized data bases and supporting technical reports, is to provide the technical characteristics of the radioactive waste materials that will (or may) be accepted by DOE for interim storage in an MRS or emplacement in a repository as developed under the Nuclear Waste Policy Act Amendment of 1987.
Transportation and Storage Subcommittee Report to the Full Commission DRAFT
Transportation and Storage Subcommittee Report to the Full Commission DRAFT
The main question before the Transportation and Storage Subcommittee was whether the United States
should change its approach to storing and transporting spent nuclear fuel (SNF) and high-level
radioactive waste (HLW) while one or more permanent disposal facilities are established.
To answer this question and to develop specific recommendations and options for consideration by the
full Commission, the Subcommittee held multiple meetings and deliberative sessions, visited several
Calculation of Upper Subcritical Limits for Nuclear Criticality in a Repository
Calculation of Upper Subcritical Limits for Nuclear Criticality in a Repository
The purpose of this document is to present the methodology to be used for development of the Subcritical Limit (SL) for post closure conditions for the Yucca Mountain repository. The SL is a value based on a set of benchmark criticality multiplier, keff> results that are outputs of the MCNP calculation method. This SL accounts for calculational biases and associated uncertainties resulting from the use of MCNP as the method of assessing kerr·
Geochemistry Model Validation Report: Material Degradation and Release Model
Geochemistry Model Validation Report: Material Degradation and Release Model
The purpose of the material degradation and release (MDR) model is to predict the fate of the waste package materials, specifically the retention or mobilization of the radionuclides and the neutron-absorbing material as a function of time after the breach of a waste package during the 10,000 years after repository closure. The output of this model is used directly to assess the potential for a criticality event inside the waste package due to the retention of the radionuclides combined with a loss of the neutron-absorbing material.
Disposal Subcommittee Report to the Full Commission
Disposal Subcommittee Report to the Full Commission
The Disposal Subcommittee of the Blue Ribbon Commission on America’s Nuclear Future (BRC) addressed a wide-ranging set of issues, all bearing directly on the central question: “How can the United States go about establishing one or more disposal sites for high-level nuclear wastes in a manner and within a timeframe that is technically, socially, economically, and politically acceptable?”
EQ6 calculations for Chemical Degradation of Navy Waste Packages
EQ6 calculations for Chemical Degradation of Navy Waste Packages
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and , 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package.
The Potential of Using Commercial Duel Purpose Canisters for Direct Disposal
The Potential of Using Commercial Duel Purpose Canisters for Direct Disposal
This report evaluates the potential for directly disposing of licensed commercial Dual Purpose
Canisters (DPCs) inside waste package overpacks without reopening. The evaluation considers
the principal features of the DPC designs that have been licensed by the Nuclear Regulatory
Commission (NRC) as these relate to the current designs of waste packages and as they relate to
disposability in the repository. Where DPC features appear to compromise future disposability,
those changes that would improve prospective disposability are identified.
slides - Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste
slides - Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
DOE SNF Phase I and II Summary Report
DOE SNF Phase I and II Summary Report
There are more than 250 forms of U.S. Department of Energy (DOE)owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. For each fuel group, a fuel type that represents the characteristics of all fuels in that group has been selected for detailed analysis.
Initial Radionuclide Inventories
Initial Radionuclide Inventories
The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only.
The Siting Record
The Siting Record
An Account of the Programs of Federal Agencies and Events That Have Led to the Selection of a Potential Site for a Geologic Repository for High-Level Radioactive Waste
Federal Policy for the Disposal of Highly Radioactive Wastes from Commercial Nuclear Power Plants
Federal Policy for the Disposal of Highly Radioactive Wastes from Commercial Nuclear Power Plants
How to dispose of highly radioactive wastes from commercial nuclear power plants is a question that has remained unresolved in the face rapidly changing technological, economic, and political requirements. In the three decades following WWII, two federal agencies -- the Atomic Energy Commission and the Energy Research and Development Administration -- tried unsuccessfully to develop a satisfactory plan for managing high level wastes.
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009
has further delayed the construction and operation of a permanent disposal facility for used fuel
and high level radioactive waste (HLW) in the United States. In concert with this decision, the
President directed the Energy Secretary to establish the Blue Ribbon Commission on America’s
Nuclear Future to review and provide recommendations on options for managing used fuel and