Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Probabilistic External Criticality Evaluation
Probabilistic External Criticality Evaluation
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
The Likelihood of Criticality Following Disposal of SF/HLW/HEU/Pu
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
Nuclear Criticality Calculations for the Wet Handling Facility
Nuclear Criticality Calculations for the Wet Handling Facility
The purpose of this calculation is to apply the process described in the TDR-DS0-NU-000001 Rev. 02, Preclosure Criticality Analysis Process Report (Ref. 2.2.25) to aid in establishing design and operational criteria important to criticality safety and to identify potential control parameters and their limits important to the criticality safety of commercial spent nuclear fuel (CSNF) handling operations in the Wet Handling Facility (WHF)
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of Department of Energy (DOE) standardized Spent Nuclear Fuel (SNF) canisters.
Bias and Range of Applicability Determinations for Commercial Nuclear Fuels
Bias and Range of Applicability Determinations for Commercial Nuclear Fuels
The purpose of this calculation is to apply the process described in the Preclosure Criticality Analysis Process Report (Ref. 2.2.12) to establish the bias for keff calculations performed for commercial nuclear fuels using the MCNP code system. This bias will be used in criticality safety analyses as part of the basis for establishing the upper subcritical limit (USL). This calculation also defines the range of applicability (ROA) for which the bias may be used directly without need to consider additional penalties on the USL.
Preclosure Criticality Safety Analysis
Preclosure Criticality Safety Analysis
The means to prevent and control criticality must be addressed as part of the Preclosure Safety Analysis (PCSA) required for compliance with 10 CFR Part 63 [DIRS 180319], where the preclosure period covers the time prior to permanent closure activities. This technical report presents the nuclear criticality safety evaluation that documents the achievement of this objective.
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV—Lessons Learned
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009
has further delayed the construction and operation of a permanent disposal facility for used fuel
and high level radioactive waste (HLW) in the United States. In concert with this decision, the
President directed the Energy Secretary to establish the Blue Ribbon Commission on America’s
Nuclear Future to review and provide recommendations on options for managing used fuel and
Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition (NUREG-75/087)
Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition (NUREG-75/087)
The Standard Review Plan (SRP) is prepared for the guidance of staff reviewers in the Office of Nuclear Reactor Regulation in performing safety reviews of applications to construct or operate nuclear power plants. The principal purpose of the SRP is to assure the quality and uniformity of staff reviews, and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews.
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
This guidance manual provides the NRC staff methodology for calculating parameters for limiting conditions of operation required in the radiological effluent Technical Specifications for light-water-cooled nuclear power plants. it provides guidance in using the model specifications reported in NUREG-0472 (Revision 1)*, and NUREG-0473 (Revision 1)*, applicable to operating PWR and BWR licensees, and users of the Standard Technical Specifications packages available for various vendor designs.
Recommendations for PWR Storage and Transportation Casks That Use Burnup Credit
Recommendations for PWR Storage and Transportation Casks That Use Burnup Credit
Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation
Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation
The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases.
Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit
Computational Benchmark for Estimated Reactivity Margin from Fission Products and Minor Actinides in BWR Burnup Credit
This report proposes and documents a computational benchmark for the estimation of the
additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor
actinides in a burnup-credit storage/transport environment, relative to SNF compositions
containing only the major actinides. The benchmark problem/configuration is a generic burnupcredit
cask designed to hold 68 boiling water reactor (BWR) spent nuclear fuel assemblies. The
purpose of this computational benchmark is to provide a reference configuration for the
Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel
Review and Prioritization of Technical Issues Related to Burnup Credit for BWR Fuel
This report has been prepared to support technical discussion of and planning for future
research supporting implementation of burnup credit for boiling-water reactor (BWR) spent fuel
storage in spent fuel pools and storage and transport cask applications. The review and
discussion in this report are based on knowledge and experience gained from work performed
in the United States and other countries, including experience with burnup credit for
pressurized-water reactor (PWR) spent fuel. Relevant physics and analysis phenomena are
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Project Overview Report
H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan Project Overview Report
As outlined in the overall program for high-level waste (HLW) management in Japan, defined by the Atomic Energy Commission (AEC), HWL separated from spent nuclear fuel during reprocessing will be immobilized in a glass matrix and stored for a period of 30 to 50 years to allow cooling; it will then be disposed of in a stable deep geological formation.
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT FOURTH NATIONAL REPORT Argentina
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT FOURTH NATIONAL REPORT Argentina
The structure of the Fourth National Report complies with the Guidelines Regarding the
Form and Structure of National Reports (INFCIRC/604/Rev.1).
Section A describes the scope of the nuclear activity developed in Argentina since 1950
as well as the legal and regulatory framework. It also makes reference to the Strategic
Plan for Radioactive Waste Management (Strategic Plan), which refers to the safety of
Spent Fuel Management and Radioactive Waste Management.
Directory of Certificates of Compliance for Radioactive Materials Packages (NUREG-0383)
Directory of Certificates of Compliance for Radioactive Materials Packages (NUREG-0383)
The purpose of this directory is to make available a convenient source of information on package designs approved by the U.S. Nuclear Regulatory Commission. To assist in identifying packages, an index by Model Number and corresponding Certificate of Compliance Number is included at the front of Volume 2. The report includes all package designs approved prior to the publication date of the directory as of September 2013.
Criticality Risks During Transportation of Spent Nuclear Fuel
Criticality Risks During Transportation of Spent Nuclear Fuel
This report presents a best-estimate probabilistic risk assessment (PRA) to quantify the frequency of criticality accidents during railroad transportation of spent nuclear fuel casks. The assessment is of sufficient detail to enable full scrutiny of the model logic and the basis for each quantitative parameter contributing to criticality accident scenario frequencies. The report takes into account the results of a 2007 peer review of the initial version of this probabilistic risk assessment, which was published as EPRI Technical Report 1013449 in December 2006.
Environmental Permitting Guidance Radioactive Substances Regulation For the Environmental Permitting (England and Wales) Regulations 2010

Environmental Permitting Guidance Radioactive Substances Regulation For the Environmental Permitting (England and Wales) Regulations 2010
This guidance is aimed at helping readers understand the permitting and other requirements specific to Radioactive Substances Regulation (RSR). The RSR regime covers
- more than one European Directive, parts of which are also implemented by other regulatory regimes which, to an extent, complement RSR;
- various Government policies and strategies; and
Underlying Yucca Mountain: The Interplay of Geology and Policy in Nuclear Waste Disposal
Underlying Yucca Mountain: The Interplay of Geology and Policy in Nuclear Waste Disposal
Nuclear waste disposal in the USA is a difficult policy issue infused with
science, technology, and politics. This issue provides an example of the co-production
of scientific knowledge and politics through public policy. The proponents of a
repository site at Yucca Mountain, Nevada, argue that their decision to go ahead
with the site is based on ‘sound science’, but the science they use to uphold their
decision is influenced by politics. In turn, the politics of site selection has been altered
Some Principles for Siting Controversial Decisions: Issues from the US Experience with High Level Nuclear Waste
Some Principles for Siting Controversial Decisions: Issues from the US Experience with High Level Nuclear Waste
Beginning with the role of "stakeholders" - those whose interests are, knowingly or unknowingly, affected - in the siting of noxious facilities, this paper seeks to develop principles for acceptable and democratically arrived at polices related to problems associated with advances in and products of science and technology. Although widely regarded as a necessary condition for success, the principles underpinning stakeholder involvement, such as representativeness, are often violated in practice.
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume II--U.S. Regulations for Geologic Disposal
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume II--U.S. Regulations for Geologic Disposal
U.S. efforts to site and construct a deep geologic repository for used fuel and high level radioactive waste (HLW) proceeded sporadically over a three-decade period from the late 1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA) codifying a national approach for developing a deep geologic repository. Amendment of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S. program, most notably the selection of Yucca Mountain as the only site of the three remaining candidates for continued investigation.
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT NATIONAL REPORT ARGENTINA 2003
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT NATIONAL REPORT ARGENTINA 2003
The structure of this National Report complies, to the greatest adjustment possible, with the
Guidelines Regarding the Form and Structure of National Reports approved in the
Preparatory Meeting held in Vienna in December 2001.
Section A includes a general introduction to the report, and a reference to the National
Program which contemplates spent fuel and radioactive waste management and the treatment
of wastes that originate from Mining and Uranium Processing.
Transportation of Commercial Spent Nuclear Fuel Regulatory Issues Resolution
Transportation of Commercial Spent Nuclear Fuel Regulatory Issues Resolution
The U.S. industry’s limited efforts at licensing transportation packages characterized as “highcapacity,”
or containing “high-burnup” (>45 GWd/MTU) commercial spent nuclear fuel
(CSNF), or both, have not been successful considering existing spent-fuel inventories that will
have to be eventually transported. A holistic framework is proposed for resolving several CSNF
transportation issues. The framework considers transportation risks, spent-fuel and cask-design