slides - Exelon Dry Cask Storage Program, 2012 Campaign Summary
slides - Exelon Dry Cask Storage Program, 2012 Campaign Summary
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This paper, prepared to aid the Blue Ribbon Commission on America’s Nuclear Future in its
deliberations, includes a discussion of the issues that would be faced in the siting, permitting and
licensing of storage and disposal facilities for the “back end” of the commercial nuclear fuel
cycle and for the Department of Energy’s (DOE) high–level radioactive waste. It discusses the
authority that could be employed by non–federal levels of government in supporting or opposing
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.
The American Nuclear Society (ANS) supports the safe, controlled, licensed, and regulated interim
storage of used nuclear fuel (UNF) (irradiated, spent fuel from a nuclear power reactor) until disposition
can be determined and completed. ANS supports the U.S. Nuclear Regulatory Commission’s (NRC’s)
determination that “spent fuel generated in any reactor can be stored safely and without significant
environmental impacts for at least 30 years beyond the licensed life for operation.
The nuclear energy industry is committed to legislative reform to create a sustainable, integrated program for federal government management of the Department of Energy’s (DOE) high-level radioactive waste and commercial used nuclear fuel.
Presentation to the Nuclear Waste Technical Review Board (NWTRB) in regards to integrating standardization into the nuclear waste management system.
The Centralized Interim Storage Facility (CISF) is designed as a temporary, above-ground away-from-reactor spent fuel storage installation for up to 40,000 metric tons of uranium (MTU). The design is non-site-specific but incorporates conservative environmental and design factors (e.g., 360 mph tornado and 0.75 g seismic loading) intended to be capable of bounding subsequent site-specific factors. Spent fuel is received in dual-purpose canister systems and/or casks already approved for transportation and storage by the Nuclear Regulatory Commission (NRC).
These slides were presented by Waste Control Specialists LLC (WCS) to the NRC at the June 16, 2015 pre-application public meeting at the NRC offices in Rockville, Maryland.
Nuclear Fuels Storage and Transportation Planning Project (NFST) Overview Presentation, 2014 Fuel Cycle Technologies (FCT) Annual Meeting, November 4-6, 2014, Idaho Falls, ID
Slides - Institute of Nuclear Materials Management, 55th Annual Meeting, July 20 – 24, 2014 Atlanta, Georgia
Slides - Institute of Nuclear Materials Management, 55th Annual Meeting, July 20 – 24, 2014 Atlanta, Georgia
The main question before the Transportation and Storage Subcommittee was whether the United States should change its approach to storing and transporting spent nuclear fuel (SNF) and high-level radioactive waste (HLW) while one or more disposal facilities are established.
In the 1990s the U.S. Department of Energy (DOE) completed a number of system analyses investigating consolidated interim storage as a part of the waste management solution. These analyses are “dated” and do not reflect the present situation regarding at-reactor used nuclear fuel (UNF) management, alternatives for away from reactor management of used nuclear fuel, and alternatives for the ultimate disposal of UNF.
"Nuclear power has long been controversial; consequently, the debate about its reemergence requires a fresh assessment of the facts about the technology, its economics and regulatory oversight, and the risks and benefits of its expansion. In the past year, the Keystone Center assembled a group of 27 individuals (see the Endorsement page for a list of Participants) with extensive experience and unique perspectives to develop a joint understanding of the “facts” and for an objective interpretation of the most credible information in areas where uncertainty persists.
In July, 2014, the Electric Power Research Institute and industry partners sampled dust on the surface of an unused canister that had been stored in an overpack at the Hope Creek Nuclear Generating Station for approximately one year. The foreign material exclusion (FME) cover that had been on the top of the canister during storage, and a second recently-removed FME cover, were also sampled. This report summarizes the results of analyses of dust samples collected from the unused Hope Creek canister and the FME covers.
Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust.
This report evaluates how the economic environment (i.e., discount rate, inflation rate, escalation rate) can impact previously estimated differences in lifecycle costs between an integrated waste management system with an interim storage facility (ISF) and a similar system without an ISF. The costs analyzed in this report are based on the document entitled Cost Implications of an Interim Storage Facility in the Waste Management System, a systems study comparing the “constant dollar” future lifecycle costs of spent nuclear fuel (SNF) management system scenarios.
The question of whether or not consolidated interim storage of commercial spent nuclear fuel (SNF) should be part of the federal waste management system as an intermediate step before permanent disposal has been debated for more than four decades. This paper summarizes an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). In this study, the order-of-magnitude estimates of total system costs were calculated and tabulated.
Presentation given at the 2016 NRC Regulatory Information Conference DOE Activities on Interim Storage by Ray Furstenau, Associate Principal Deputy Assistant Secretary.
A letter of support from Eddy County, NM to Secretary Moniz in regards to an interim storage facility
This report has been produced at the request of Congress. The House Appropriations Committee Print that accompanied the Consolidated Appropriations Act, 2008, requests that the U.S. Department of Energy (the Department):<br/>…develop a plan to take custody of spent fuel currently stored at decommissioned reactor sites to both reduce costs that are ultimately borne by the taxpayer and demonstrate that DOE can move forward in the near term with at least some element of nuclear waste policy.
Crystalline Repository Project Briefing