Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Radiolytic Specie Generation from Internal Waste Package Criticality
Radiolytic Specie Generation from Internal Waste Package Criticality
Dissolved Concentration Limits of Elements with Radioactive Isotopes
Dissolved Concentration Limits of Elements with Radioactive Isotopes
The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments.
Dry Cask Storage of Nuclear Spent Fuel
Dry Cask Storage of Nuclear Spent Fuel
Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel
Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel
As nuclear power plants began to run out of storage capacity in spent nuclear fuel (SNF) storage pools, many nuclear operating companies added higher density pool storage racks to increase pool capacity. Most nuclear power plant storage pools have been re-racked one or more times. As many spent fuel storage pools were re-racked to the maximum extent possible, nuclear operating companies began to employ interim dry storage technologies to store SNF in certified casks and canister-based systems outside of the storage pool in independent spent fuel storage installations (ISFSIs).
Technical Bases for Extended Dry Storage of Spent Nuclear Fuel
Technical Bases for Extended Dry Storage of Spent Nuclear Fuel
Independent spent fuel storage installations (ISFSIs) are currently licensed for 20 years. However, delays in developing permanent spent fuel disposal capability require continued ISFSI storage beyond the 20-year term. This report provides a technical basis for demonstrating the feasibility of extended spent fuel storage in ISFSIs.
slides - ISFSI Pad Design Issues
slides - ISFSI Pad Design Issues
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
EBS Radionuclide Transport Abstraction
EBS Radionuclide Transport Abstraction
The purpose of this report is to develop and analyze the Engineered Barrier System (EBS) Radionuclide Transport Abstraction Model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment: Engineered Barrier System: Radionuclide Transport Abstraction Model Report (BSC 2006 [DIRS 177739]). The EBS Radionuclide Transport Abstraction (or RTA) is the conceptual model used in the Total System Performance Assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ).
Waste Package Flooding Probability Evaluation
Waste Package Flooding Probability Evaluation
The objective of this calculation is to evaluate the probability of flooding a waste package with seepage water. Disruptive events can affect the Engineered Barrier System (EBS) components and have the potential to allow an advective flow of seepage water to reach the waste package. The advective and diffusive flow paths into the waste package have the potential to result in water accumulation inside the waste package, which in turn can lead to a potentially critical configuration. This calculation will evaluate the following:
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
Preliminary Criticality Analysis of Degraded SNF Accumulations External to a Waste Package (SCPB: N/A)
This study is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probablility of criticality in the far- field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses.
slides - ISFSI Security Rulemaking Update
slides - ISFSI Security Rulemaking Update
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - ISFSI Security Rulemaking Update
slides - ISFSI Security Rulemaking Update
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Yankee Atomic Electric Company vs The United States, November 14, 2013
Yankee Atomic Electric Company vs The United States, November 14, 2013
Spent Nuclear Fuel Litigation - Court of Federal Claims decision in Maine Yankee II, Conn Yankee II and Yankee Atomic II
In-Drift Precipitates/Salts Model
In-Drift Precipitates/Salts Model
This report documents the development and validation of the in-drift precipitates/salts (IDPS) process model. The IDPS process model is a geochemical model designed to predict the postclosure effects of evaporation and deliquescence on the chemical composition of water within the Engineered Barrier System (EBS) in support of the total system performance assessment (TSPA). Application of the model in support of TSPA is documented in Engineered Barrier System: Physical and Chemical Environment (BSC 2005 [DIRS 175083]).
Engineered Barrier System: Physical and Chemical Environment
Engineered Barrier System: Physical and Chemical Environment
The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. This report documents the development of a new process-level model, the near-field chemistry (NFC) model, and develops two abstraction models.
slides - Prairie Island ISFSI License Renewal and High Burn Up Fuel Contention
slides - Prairie Island ISFSI License Renewal and High Burn Up Fuel Contention
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
THERMAL PERFORMANCE SENSITIVITY STUDIES IN SUPPORT OF MATERIAL MODELING FOR EXTENDED STORAGE OF USED NUCLEAR FUEL
THERMAL PERFORMANCE SENSITIVITY STUDIES IN SUPPORT OF MATERIAL MODELING FOR EXTENDED STORAGE OF USED NUCLEAR FUEL
The work reported here is an investigation of the sensitivity of component temperatures in a specific storage system, including fuel cladding temperatures, in response to modeling assumptions that differ from design-basis, including age-related changes that could degrade the thermal behavior of the system. Preliminary evaluations of representative horizontal and vertical storage systems at design basis conditions provides general insight into the expected behavior of storage systems over extended periods of time.
DECOMMISSIONING COST ANALYSIS for the CLINTON POWER STATION
DECOMMISSIONING COST ANALYSIS for the CLINTON POWER STATION
<div class="page" title="Page 1">
<div class="section">
<div class="layoutArea">
<div class="column">
Crystal River Unit 3 -- UPDATED IRRADIATED FUEL MANAGEMENT PROGRAM- 10 CFR 50.54(bb) and SITE-SPECIFIC DECOMMISSIONING COST ESTIMATE FOR THE CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT
Crystal River Unit 3 -- UPDATED IRRADIATED FUEL MANAGEMENT PROGRAM- 10 CFR 50.54(bb) and SITE-SPECIFIC DECOMMISSIONING COST ESTIMATE FOR THE CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
Kewaunee Power Station -- Post-Shutdown Decommissioning Activities Report
Kewaunee Power Station -- Post-Shutdown Decommissioning Activities Report
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
ORDER GRANTING APPLICATIONS TO REDUCE RATES UNDER WHOLESALE POWER CONTRACTS
ORDER GRANTING APPLICATIONS TO REDUCE RATES UNDER WHOLESALE POWER CONTRACTS
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
ISFSI Location Information
ISFSI Location Information
Email from Steven Kraft to Alex Thrower
Map-U.S. Independent Spent Fuel Storage Installations
Map-U.S. Independent Spent Fuel Storage Installations
Map-U.S. Independent Spent Fuel Storage Installations
La Crosse: Operation, Decommissiong, and the interim storage of spent nuclear fuel
La Crosse: Operation, Decommissiong, and the interim storage of spent nuclear fuel
Civilian Nuclear Spent Fuel Temporary Storage Options
Civilian Nuclear Spent Fuel Temporary Storage Options
The Department of Energy (DOE) is studying a site at Yucca Mountain, Nevada, for a permanent underground repository for highly radioactive spent fuel from nuclear reactors, but delays have pushed back the facility’s opening date to 2010 at the earliest. In the meantime, spent fuel is accumulating at U.S. nuclear plant sites at the rate of about 2,000 metric tons per year. Major options for managing those growing quantities of nuclear spent fuel include continued storage at reactors, construction of a DOE interim storage site near Yucca Mountain, and licensing of private storage facilities.