slides - ISFSI Security Rulemaking Update
slides - ISFSI Security Rulemaking Update
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this analysis is to evaluate the types of defects or imperfections that could occur in a waste package or a drip shield and potentially lead to its early failure, and to estimate a probability of undetected occurrence for each type. An early failure is defined as the through-wall penetration of a waste package or drip shield due to manufacturing or handling-induced defects, at a time earlier than would be predicted by mechanistic degradation models for a defect-free waste package or drip shield.
Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction.
The purpose of this report is to evaluate the potential for penetration of the Alloy 22 (UNS N06022) waste package outer barrier by localized corrosion due to the deliquescence of soluble constituents in dust present on waste package surfaces. The results support a recommendation to exclude deliquescence-induced localized corrosion (pitting or crevice corrosion) of the outer barrier from the total system performance assessment for the license application (TSPA-LA).
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Spent Nuclear Fuel Litigation - Court of Federal Claims decision in Maine Yankee II, Conn Yankee II and Yankee Atomic II
This report is developed from Technical Work Plan for: Thermodynamic Databases for Chemical Modeling (BSC 2006 [DIRS 177885]). The purpose of this analysis report is to update the thermochemical database data0.ymp.R4 (Output DTN: SN0410T0510404.002). Various data have been added, corrected, or corroborated, partly in response to four Condition Reports (CRs): CR 6489, CR 6731, CR 7542, and CR 7756. The most notable changes are a general revision of phosphate data to achieve consistency with the recommendations from the Committee on Data for Science and Technology (CODATA) (Cox. et al.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The work reported here is an investigation of the sensitivity of component temperatures in a specific storage system, including fuel cladding temperatures, in response to modeling assumptions that differ from design-basis, including age-related changes that could degrade the thermal behavior of the system. Preliminary evaluations of representative horizontal and vertical storage systems at design basis conditions provides general insight into the expected behavior of storage systems over extended periods of time.
The effects of radiation on the corrosion of various metals and alloys, particularly with respect to in-reactor processes, has been discussed by a number of authors (Shoesmith and King 1998, p.2). Shoesmith and King (1998) additionally discuss the effects of radiation of the proposed Monitored Geologic Repository (MGR) Waste Package (WP) materials. Radiation effects on the corrosion of metals and alloys include, among other things, radiolysis of local gaseous and aqueous environments lead to the fixation of nitrogen as NO, NO2, and especially HN03 (Reed and Van Konynenburg 1988, pp.
<div class="page" title="Page 1">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
Email from Steven Kraft to Alex Thrower
Map-U.S. Independent Spent Fuel Storage Installations
The Department of Energy (DOE) is studying a site at Yucca Mountain, Nevada, for a permanent underground repository for highly radioactive spent fuel from nuclear reactors, but delays have pushed back the facility’s opening date to 2010 at the earliest. In the meantime, spent fuel is accumulating at U.S. nuclear plant sites at the rate of about 2,000 metric tons per year. Major options for managing those growing quantities of nuclear spent fuel include continued storage at reactors, construction of a DOE interim storage site near Yucca Mountain, and licensing of private storage facilities.