Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Isotopic Composition Predictions
Taking credit for the reduced reactivity of spent nuclear fuel in criticality analyses is referred to
as burnup credit. Criticality safety evaluations employing burnup credit require validation of the
depletion and criticality calculation methods and computer codes with available measurement
data. To address the issues of burnup credit criticality validation, the U.S. Nuclear Regulatory
Commission initiated a project with Oak Ridge National Laboratory to (1) develop and establish
Petition and Letters from Secretatry of Energy regarding US DOE Proposal to Congress
Petition and Letters from Secretatry of Energy regarding US DOE Proposal to Congress
Consistent with the mandate issued by the United States Court of Appeals for the District of Columbia Circuit in National Association of Regulatory Utility Commissioners v. United States Department of Energy, (Nos. 11-1066 and 11-1068; D.C. Cir. 2013), and notwithstanding the absence of the determination required to be made pursuant to the Nuclear Waste Policy
Act of 1982 (NWPA), as amended, 42 U.S.C. 10222(a)(4), I hereby propose, subject to any
Letter to President Obama - Blue Ribbon Commission
Letter to President Obama - Blue Ribbon Commission
Dear Mr. President:
At your direction, the Secretary of Energy established the Blue Ribbon Commission on
America’s Nuclear Future to review policies for managing the back end of the nuclear
fuel cycle and recommend a new strategy. We are pleased to be serving as Co‐
Chairmen of the Commission, and we are writing to you to highlight an important action
we strongly believe should be reflected in your Fiscal Year 2013 baseline budget
projections.
In our draft report to the Secretary, issued in July of this year, the Commission
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Sensitivity Coefficient Generation for a Burnup Credit Cask Model Using TSUNAMI-3D
Recommendation by the Secretary of Energy of Candidate Sites for Site Characterization for the First Radioactive-Waste Repository
Recommendation by the Secretary of Energy of Candidate Sites for Site Characterization for the First Radioactive-Waste Repository
The Nuclear Waste Policy Act of 1982 (the Act), established a
step-by-step process for the siting of the nation's first repository for
high-level radioactive waste and spent fuel. The Act gave the Department of
Energy (DOE) the primary responsibility for conducting this siting process.
The first step in the process laid out in the Act was the development by
the DOE, with the concurrence of the Nuclear Regulatory Commission (NRC), of
general guidelines to be used by the Secretary of the DOE (the Secretary) in
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
Blue Ribbon Commission on America’s Nuclear Future Draft Report to the Secretary of Energy
Blue Ribbon Commission on America’s Nuclear Future Draft Report to the Secretary of Energy
America’s nuclear waste management program is at an impasse. The Obama Administration’s decision
to halt work on a repository at Yucca Mountain in Nevada is but the latest indicator of a policy that has
been troubled for decades and has now all but completely broken down. The approach laid out under
the 1987 Amendments to the Nuclear Waste Policy Act (NWPA)—which tied the entire U.S. high-level
waste management program to the fate of the Yucca Mountain site—has not worked to produce a
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages
Spent fuel transportation and storage cask designs based on a burnup credit approach must
consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For
example, the spent fuel composition must be adequately characterized and the criticality analysis
model can be complicated by the need to consider axial burnup variations. Parametric analyses are
needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
February 16, 2011 - Letter from Secretary Chu to the BRC, February 11, 2011
February 16, 2011 - Letter from Secretary Chu to the BRC, February 11, 2011
Dear Co-Chairs Hamilton and Scowcroft:
The Obama Administration believes that nuclear energy has an important role to playas America moves to a clean energy future. One of my goals as Secretary of Energy is to help restart America's nuclear industry, creating thousands of new jobs and new export opportunities for the United States while producing the carbon free energy we need to power America's economy.
Letter to The Honorable Dr. Steven Chu, Secretary of Energy - Blue Ribbon Commission request for approval to establish and populate the three subcommittees.
Letter to The Honorable Dr. Steven Chu, Secretary of Energy - Blue Ribbon Commission request for approval to establish and populate the three subcommittees.
Dear Secretary Chu:
Thank you for your remarks to the Blue Ribbon Commission on America’s Nuclear Future at our inaugural meeting on March 25, 2010. Your guidance was both enlightening and invaluable as we establish a plan to fulfill the Commission’s charter.
Blue Ribbon Commission on America’s Nuclear Future Report to the Secretary of Energy
Blue Ribbon Commission on America’s Nuclear Future Report to the Secretary of Energy
This report highlights the findings and conclusions of the Blue Ribbon Commission on America’s Nuclear Future (BRC) and presents recommendations for consideration by the Administration and Congress, as well as interested state, tribal and local governments, other stakeholders, and the public.
Survey of National Programs for Managing High-Level Radioactive Waste and Spent Nuclear Fuel
Survey of National Programs for Managing High-Level Radioactive Waste and Spent Nuclear Fuel
The creation of high-activity, long-lived radioactive waste is an inevitable consequence of generating electricity in nuclear power plants. It also is an inevitable consequence of engaging in a set of activities associated with national defense, ranging from propelling nuclear submarines to producing the fissionable materials needed to construct nuclear weapons. Early in the nuclear era, the very-longterm management and the ultimate disposition of those wastes was not a high priority.