Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Flexible Integrated Modular Nuclear Fuel Canister System
Flexible Integrated Modular Nuclear Fuel Canister System
Slides, Spark Presentation
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of ATR Spent Nuclear Fuel in a Waste Package
The objective of this calculation is to perform intact and degraded mode criticality evaluations of the U.S. Department of Energy’s (DOE) Advanced Test Reactor (ATR) Spent Nuclear Fuel (SNF) placed in the DOE standardized SNF canister. This analysis evaluates the codisposal of the DOE SNF canister containing the ATR SNF in a 5-Defense High-Level Waste (5-DHLW) Short Waste Package (WP) (Bechtel SAIC Company, LLC [BSC] 2004a), which is to be placed in a monitored geologic repository (MGR).
Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode
Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode
The purpose of this calculation is to perform degraded mode criticality evaluations of Plutonium disposed in a ceramic waste form and emplaced in a Monitored Geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for Plutonium immobilization is considered for this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilzed Plutonium) in each.
SOCIAL DISTRUST: IMPLICATIONS AND RECOMMENDATION FOR SPENT NUCLEAR FUEL AND HIGH LEVEL RADIOACTIVE WASTE MANAGEMENT
SOCIAL DISTRUST: IMPLICATIONS AND RECOMMENDATION FOR SPENT NUCLEAR FUEL AND HIGH LEVEL RADIOACTIVE WASTE MANAGEMENT
The management of spent nuclear fuel (SNF) and defense high level waste (HLW) is a complex sociotechnical
systems challenge. Coordinated, reliable, and safe performance will be required over very long
periods of time within evolving social and technical contexts. To accomplish these goals, a waste
management system will involve a host of facilities for interim storage and longterm disposal, a
transportation infrastructure, and research and development centers. The complexity of SNF and HLW
Yankee Atomic Electric Company vs The United States, November 14, 2013
Yankee Atomic Electric Company vs The United States, November 14, 2013
Spent Nuclear Fuel Litigation - Court of Federal Claims decision in Maine Yankee II, Conn Yankee II and Yankee Atomic II
Commercial Reactor Criticality Depletion For Grand Gulf, Unit 1
Commercial Reactor Criticality Depletion For Grand Gulf, Unit 1
The objectie of this calculation is to document the Grand Gulf, Unit 1, (GG1) fuel depletion calculations. The GG1 reactor is a boiling water reactor (BWR) owned and operated by Entergy Operations Inc. The Commercial Reactor Criticality (CRC) evaluations support the development and validation of the neutronic models used for criticality analyses involving commercial spent nuclear fuel in a geologic repository. This calculation is performed as part of the evaluation CRC program. This report is an engineering calculation supporting the burnup credit methodology of YMP 2000 (Ref.
Humboldt Bay License Termination Plan
Humboldt Bay License Termination Plan
The license termination plan for Humboldt Bay owned by the Pacific Gas and Electric Company.
Total System Model Version 6.0 Dose Estimating Routines Design and Bases
Total System Model Version 6.0 Dose Estimating Routines Design and Bases
This manual discusses the routines to estimate radiological doses from normal operations used in
Version 6.0 of the Total System Model (TSM) as described in the TSM User Manual prepared
for the U.S. Department of Energy (DOE) by Bechtel SAIC Company (BSC) (BSC 2007a). The
TSM estimates doses during the simulation of the Civilian Radioactive Waste Management
System (CRWMS) mission. The TSM is not intended to provide a robust dose evaluation tool
and should only be used for relative comparisons of scenarios to general understand if doses are
slides - Deep Borehole Disposal of Spent Fuel
slides - Deep Borehole Disposal of Spent Fuel
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degradedmode criticality performance.
Geological Disposal of Radioactive Waste
Geological Disposal of Radioactive Waste
The objective of this safety requirements publication is to set down the protection objectives and criteria for geological disposal and to establish the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management.
Commercial Spent Nuclear Fuel Waste Package Misload Analysis
Commercial Spent Nuclear Fuel Waste Package Misload Analysis
The purpose of this calculation is to estimate the probability of misloading a commercial spent
nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or
burnup) outside the waste package design. The waste package designs are based on the expected
commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1
and Table 1). For this calculation, a misloaded waste package is defined as a waste package that
Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF
Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of the transportation, aging and disposal (TAD) canister-based systems.
Wyoming Decline of MRS
Wyoming Decline of MRS
This letter is written by Former Wyoming Governor Mike Sullivan to inform the Fremont County Commissioners of his conclusion to decline the MRC facility.
Nuclear Waste: Is There A Need For Federal Interim Storage?
Nuclear Waste: Is There A Need For Federal Interim Storage?
About 20,000 metric tons of spent, or used, nuclear
fuel have accumulated since the beginning of commercial
nuclear power prbduction in the United States. At the end
of the currently licensed period of all existing nuclear power
plants and those under construction, the amount of spent
nuclear fuel is expected to total 87,000 metric tons.
Thus far, practically all of the spent nuclear fuel is
stored in water-filled pools at reactor sites. However, space
does not exist in the pools to store all the spent fuel expected
Radiolytic Specie Generation from Internal Waste Package Criticality
Radiolytic Specie Generation from Internal Waste Package Criticality
The effects of radiation on the corrosion of various metals and alloys, particularly with respect to in-reactor processes, has been discussed by a number of authors (Shoesmith and King 1998, p.2). Shoesmith and King (1998) additionally discuss the effects of radiation of the proposed Monitored Geologic Repository (MGR) Waste Package (WP) materials. Radiation effects on the corrosion of metals and alloys include, among other things, radiolysis of local gaseous and aqueous environments lead to the fixation of nitrogen as NO, NO2, and especially HN03 (Reed and Van Konynenburg 1988, pp.
Qualification of Thermodynamic Data for Geochemical Modeling of Mineral–Water Interactions in Dilute Systems
Qualification of Thermodynamic Data for Geochemical Modeling of Mineral–Water Interactions in Dilute Systems
This report is developed from Technical Work Plan for: Thermodynamic Databases for Chemical Modeling (BSC 2006 [DIRS 177885]). The purpose of this analysis report is to update the thermochemical database data0.ymp.R4 (Output DTN: SN0410T0510404.002). Various data have been added, corrected, or corroborated, partly in response to four Condition Reports (CRs): CR 6489, CR 6731, CR 7542, and CR 7756. The most notable changes are a general revision of phosphate data to achieve consistency with the recommendations from the Committee on Data for Science and Technology (CODATA) (Cox. et al.
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository, Volume II: Immobilized In Ceramic
Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository, Volume II: Immobilized In Ceramic
As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.
Nuclear Energy Research and Development Roadmap
Nuclear Energy Research and Development Roadmap
To achieve energy security and greenhouse gas (GHG) emission reduction objectives, the United States must develop and deploy clean, affordable, domestic energy sources as quickly as possible. Nuclear power will continue to be a key component of a portfolio of technologies that meets our energy goals. This document provides a roadmap for the Department of Energy’s (DOE’s) Office of Nuclear Energy (NE) research, development, and demonstration activities that will ensure nuclear energy remains viable energy option for the United States.
SAS2H Analysis of Radiochemical Assay Samples from Turkey Point PWR Reactor
SAS2H Analysis of Radiochemical Assay Samples from Turkey Point PWR Reactor
The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied·to future depletion calculations using SAS2H in which no measurements are available. ·
Used Fuel Disposition U.S. Radioactive Waste Inventory and Characteristics Related to Potential Future Nuclear Energy Systems
Used Fuel Disposition U.S. Radioactive Waste Inventory and Characteristics Related to Potential Future Nuclear Energy Systems
In February, 2011 the Blue Ribbon Commission (BRC) on America’s Nuclear Future requested the Department of Energy
(DOE) to provide a white paper summarizing the quantities and characteristics of potential waste generated by various
nuclear fuel cycles. The BRC request expressed interest in two classes of radioactive wastes:
Existing waste that are or might be destined for a civilian deep geologic repository or equivalent.
Potential future waste, generated by alternative nuclear fuel cycles (e.g. wastes from reprocessing, mixed-oxide
Closing Yucca Mountain: Litigation Associated with Attempts to Abandon the Planned Nuclear Waste Repository
Closing Yucca Mountain: Litigation Associated with Attempts to Abandon the Planned Nuclear Waste Repository
Passed in 1982, the Nuclear Waste Policy Act (NWPA) was an effort to establish an explicit statutory basis for the Department of Energy (DOE) to dispose of the nation’s most highly radioactive nuclear waste. The NWPA requires DOE to remove spent nuclear fuel from commercial nuclear power plants, in exchange for a fee, and transport it to a permanent geologic repository or an interim storage facility before permanent disposal. Defense-related high-level<br>waste is to go into the same repository.
Screening and Identification of Sites for a Proposed Monitored Retreivable Storage Facilty
Screening and Identification of Sites for a Proposed Monitored Retreivable Storage Facilty
The Director, Office of Civilian Radioactive Waste Management (OCRWM), Department of Energy (DOE), has identified the Clinch River Breeder Reactor site, the DOE Oak Ridge Reservation and the Tennessee Valley Authority (TVA) Hartsville Nuclear Plant site as preferred and alternative sites, respectively, for development of site-specific designs as part of the proposal for construction of an integrated Monitored Retrievable Storage (MRS) Facility. The proposal, developed pursuant to Section 141(b) of the Nuclear Waste Policy Act of 1982, will be submitted to Congress in January 1986.