Skip to main content

Spent Nuclear Fuel Transportation: An Overview

Spent nuclear fuel comprises a fraction of the hazardous materials packages shipped annually in the United States. In fact, at the present time, fewer than 100 packages of spent nuclear fuel are shipped annually. At the onset of spent fuel shipments to the proposed Yucca Mountain, Nevada, repository, the U.S. Department of Energy (DOE) expects to ship 400 - 500 spent fuel transport casks per year over the life of the facility.

Community

Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister

The purpose of this calculation is to estimate volumes, masses, and surface areas associated with (a) an empty Department of Energy (DOE) 18-inch diameter, 15-ft long spent nuclear fuel (SNF) canister, (b) an empty DOE 24-inch diameter, 15-ft long SNF canister, (c) Shippingport Light Water Breeder Reactor (LWBR) SNF, and (d) the internal basket structure for the 18-in. canister that has been designed specifically to accommodate Seed fuel from the Shippingport LWBR.

Community

Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode

The purpose of this calculation is to perform degraded mode criticality evaluations of plutonium disposed in a ceramic waste form and emplaced in a Monitored Geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for plutonium immobilization is considered for this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilized plutonium) in each.

Community

EQ6 Calculations for Chemical Degradation of TRIGA Codisposal Waste PacKages

The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Training, Research, Isotopes, General Atomics (TRIGA) reactor (Ref. 1). The TRIGA SNF has been considered for disposal at the potential Yucca Mountain site.

Community

Long-Term Criticality Control Issues for the MPC (SCPB: N/A)

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) in response to a request received via a QAP-3-12 Design Input Data Request (Reference 5.1) from Waste Acceptance, Storage, & Transportation (WAST) Design (formerly MRSMPC Design). This design analysis is an answer to the Design Input Data Request to provide: Specific requirements for long-term criticality control.

Community

Enrico Fermi Fast Reactor Spent Nuclear Fuel Criticality Calculations: Intact Mode

The purpose of this calculation is to perform intact mode and partially degraded mode criticality evaluations of the Department of Energy's (DOE) Enrico Fermi (EF) Spent Nuclear Fuel (SNF) co-disposed in a 5 Defense High-Level Waste (5-DHLW) Waste Package (WP) and emplaced in a Monitored Geologic Repository (MGR). The criticality evaluations estimate the values of the effective neutron multiplication factor, keff, as a measure of nuclear criticality potential, for the 5- DHLW/DOE SNF WP with intact or partially degraded internal configurations.

Community

Commercial Spent Nuclear Fuel Igneous Scenario Criticality Evaluation

The purpose of this scientific analysis report, Commercial Spent Nuclear Fuel Igneous Scenario Criticality Evaluation, is to investigate the effects of an igneous intrusion event occurring in the repository on commercial spent nuclear fuel (CSNF) stored in waste packages. This activity supports the Postclosure Criticality Department's development of bounding (design-basis) configurations for loading specifications and the evaluation of features, events, and processes (FEPs) that could lead to waste package criticality.

Community

Waste Package Neutron Absorber, Thermal Shunt, and Fill Gas Selection Report

Materials for neutron absorber, thermal shunt, and fill gas for use in the waste package were selected using a qualitative approach. For each component, selection criteria were identified; candidate materials were selected; and candidates were evaluated against these criteria. The neutron absorber materials evaluated were essentially boron-containing stainless steels. Two candidates were evaluated for the thermal shunt material. The fill gas candidates were common gases such as helium, argon, nitrogen, carbon dioxide, and dry air.

Community

Initial Waste Package Probabilistic Criticality Analysis: Uncanistered Fuel

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to:
1. Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts;

Community